scispace - formally typeset
Search or ask a question
Topic

Channel (digital image)

About: Channel (digital image) is a research topic. Over the lifetime, 7211 publications have been published within this topic receiving 69974 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple but effective image prior - dark channel prior to remove haze from a single input image is proposed, based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel.
Abstract: In this paper, we propose a simple but effective image prior-dark channel prior to remove haze from a single input image. The dark channel prior is a kind of statistics of outdoor haze-free images. It is based on a key observation-most local patches in outdoor haze-free images contain some pixels whose intensity is very low in at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high-quality haze-free image. Results on a variety of hazy images demonstrate the power of the proposed prior. Moreover, a high-quality depth map can also be obtained as a byproduct of haze removal.

3,668 citations

01 Jan 2016
TL;DR: This thesis develops an effective but very simple prior, called the dark channel prior, to remove haze from a single image, and thus solves the ambiguity of the problem.
Abstract: Haze brings troubles to many computer vision/graphics applications. It reduces the visibility of the scenes and lowers the reliability of outdoor surveillance systems; it reduces the clarity of the satellite images; it also changes the colors and decreases the contrast of daily photos, which is an annoying problem to photographers. Therefore, removing haze from images is an important and widely demanded topic in computer vision and computer graphics areas. The main challenge lies in the ambiguity of the problem. Haze attenuates the light reflected from the scenes, and further blends it with some additive light in the atmosphere. The target of haze removal is to recover the reflected light (i.e., the scene colors) from the blended light. This problem is mathematically ambiguous: there are an infinite number of solutions given the blended light. How can we know which solution is true? We need to answer this question in haze removal. Ambiguity is a common challenge for many computer vision problems. In terms of mathematics, ambiguity is because the number of equations is smaller than the number of unknowns. The methods in computer vision to solve the ambiguity can roughly categorized into two strategies. The first one is to acquire more known variables, e.g., some haze removal algorithms capture multiple images of the same scene under different settings (like polarizers).But it is not easy to obtain extra images in practice. The second strategy is to impose extra constraints using some knowledge or assumptions .All the images in this thesis are best viewed in the electronic version. This way is more practical since it requires as few as only one image. To this end, we focus on single image haze removal in this thesis. The key is to find a suitable prior. Priors are important in many computer vision topics. A prior tells the algorithm "what can we know about the fact beforehand" when the fact is not directly available. In general, a prior can be some statistical/physical properties, rules, or heuristic assumptions. The performance of the algorithms is often determined by the extent to which the prior is valid. Some widely used priors in computer vision are the smoothness prior, sparsity prior, and symmetry prior. In this thesis, we develop an effective but very simple prior, called the dark channel prior, to remove haze from a single image. The dark channel prior is a statistical property of outdoor haze-free images: most patches in these images should contain pixels which are dark in at least one color channel. These dark pixels can be due to shadows, colorfulness, geometry, or other factors. This prior provides a constraint for each pixel, and thus solves the ambiguity of the problem. Combining this prior with a physical haze imaging model, we can easily recover high quality haze-free images.

2,055 citations

Book ChapterDOI
08 Oct 2016
TL;DR: A multi-scale deep neural network for single-image dehazing by learning the mapping between hazy images and their corresponding transmission maps by combining a coarse-scale net which predicts a holistic transmission map based on the entire image, and a fine-scale network which refines results locally.
Abstract: The performance of existing image dehazing methods is limited by hand-designed features, such as the dark channel, color disparity and maximum contrast, with complex fusion schemes. In this paper, we propose a multi-scale deep neural network for single-image dehazing by learning the mapping between hazy images and their corresponding transmission maps. The proposed algorithm consists of a coarse-scale net which predicts a holistic transmission map based on the entire image, and a fine-scale net which refines results locally. To train the multi-scale deep network, we synthesize a dataset comprised of hazy images and corresponding transmission maps based on the NYU Depth dataset. Extensive experiments demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods on both synthetic and real-world images in terms of quality and speed.

1,230 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: The channel and spatial reliability concepts are introduced to DCF tracking and a novel learning algorithm is provided for its efficient and seamless integration in the filter update and the tracking process.
Abstract: Short-term tracking is an open and challenging problem for which discriminative correlation filters (DCF) have shown excellent performance. We introduce the channel and spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process. The spatial reliability map adjusts the filter support to the part of the object suitable for tracking. This allows tracking of non-rectangular objects as well as extending the search region. Channel reliability reflects the quality of the learned filter and it is used as a feature weighting coefficient in localization. Experimentally, with only two simple standard features, HOGs and Colornames, the novel CSR-DCF method – DCF with Channel and Spatial Reliability – achieves state-of-the-art results on VOT 2016, VOT 2015 and OTB. The CSR-DCF runs in real-time on a CPU.

941 citations

Proceedings ArticleDOI
22 Oct 2019
TL;DR: Yu et al. as mentioned in this paper proposed a generative image inpainting system to complete images with free-form mask and guidance, which is based on gated convolutions learned from millions of images without additional labeling efforts.
Abstract: We present a generative image inpainting system to complete images with free-form mask and guidance. The system is based on gated convolutions learned from millions of images without additional labelling efforts. The proposed gated convolution solves the issue of vanilla convolution that treats all input pixels as valid ones, generalizes partial convolution by providing a learnable dynamic feature selection mechanism for each channel at each spatial location across all layers. Moreover, as free-form masks may appear anywhere in images with any shape, global and local GANs designed for a single rectangular mask are not applicable. Thus, we also present a patch-based GAN loss, named SN-PatchGAN, by applying spectral-normalized discriminator on dense image patches. SN-PatchGAN is simple in formulation, fast and stable in training. Results on automatic image inpainting and user-guided extension demonstrate that our system generates higher-quality and more flexible results than previous methods. Our system helps user quickly remove distracting objects, modify image layouts, clear watermarks and edit faces. Code, demo and models are available at: \url{https://github.com/JiahuiYu/generative_inpainting}.

904 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
86% related
Image processing
229.9K papers, 3.5M citations
85% related
Feature (computer vision)
128.2K papers, 1.7M citations
85% related
Image segmentation
79.6K papers, 1.8M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202216
2021559
2020643
2019696
2018613
2017496