scispace - formally typeset
Search or ask a question
Topic

Channel (digital image)

About: Channel (digital image) is a research topic. Over the lifetime, 7211 publications have been published within this topic receiving 69974 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed matching framework has been evaluated using many different types of multimodal images, and the results demonstrate its superior matching performance with respect to the state-of-the-art methods.
Abstract: While image matching has been studied in remote sensing community for decades, matching multimodal data [e.g., optical, light detection and ranging (LiDAR), synthetic aperture radar (SAR), and map] remains a challenging problem because of significant nonlinear intensity differences between such data. To address this problem, we present a novel fast and robust template matching framework integrating local descriptors for multimodal images. First, a local descriptor [such as histogram of oriented gradient (HOG) and local self-similarity (LSS) or speeded-up robust feature (SURF)] is extracted at each pixel to form a pixelwise feature representation of an image. Then, we define a fast similarity measure based on the feature representation using the fast Fourier transform (FFT) in the frequency domain. A template matching strategy is employed to detect correspondences between images. In this procedure, we also propose a novel pixelwise feature representation using orientated gradients of images, which is named channel features of orientated gradients (CFOG). This novel feature is an extension of the pixelwise HOG descriptor with superior performance in image matching and computational efficiency. The major advantages of the proposed matching framework include: 1) structural similarity representation using the pixelwise feature description and 2) high computational efficiency due to the use of FFT. The proposed matching framework has been evaluated using many different types of multimodal images, and the results demonstrate its superior matching performance with respect to the state-of-the-art methods.

129 citations

Posted Content
TL;DR: This work proposes a domain adaptation paradigm, which consists of an image translation module and two image dehazing modules, and applies a bidirectional translation network to bridge the gap between the synthetic and real domains by translating images from one domain to another.
Abstract: Image dehazing using learning-based methods has achieved state-of-the-art performance in recent years. However, most existing methods train a dehazing model on synthetic hazy images, which are less able to generalize well to real hazy images due to domain shift. To address this issue, we propose a domain adaptation paradigm, which consists of an image translation module and two image dehazing modules. Specifically, we first apply a bidirectional translation network to bridge the gap between the synthetic and real domains by translating images from one domain to another. And then, we use images before and after translation to train the proposed two image dehazing networks with a consistency constraint. In this phase, we incorporate the real hazy image into the dehazing training via exploiting the properties of the clear image (e.g., dark channel prior and image gradient smoothing) to further improve the domain adaptivity. By training image translation and dehazing network in an end-to-end manner, we can obtain better effects of both image translation and dehazing. Experimental results on both synthetic and real-world images demonstrate that our model performs favorably against the state-of-the-art dehazing algorithms.

129 citations

Proceedings ArticleDOI
09 May 1995
TL;DR: A new measure of perceptual image quality based on a multiple channel human visual system (HVS) model for use in digital image compression that correlates better with perceptual imagequality than the conventional SNR measure.
Abstract: We propose a new measure of perceptual image quality based on a multiple channel human visual system (HVS) model for use in digital image compression. The model incorporates the HVS light sensitivity, spatial frequency and orientation sensitivity, and masking effects. The model is based on the concept of local band-limited contrast (LBC) in oriented spatial frequency bands. This concept leads to a simple masking function. The model has the flexibility to account for the changes in frequency sensitivity as a function of local luminance and is consistent with masking experiments using gratings and edges. Numerical scaling experiments with a test panel and a set a test images that were coded using different coding algorithms showed that the proposed measure correlates better with perceptual image quality than the conventional SNR measure.

129 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A novel method for illuminant estimation by using the information of grey pixels detected in a given color-biased image to outperforms most of the state-of-the-art color constancy approaches with the inherent merit of low computational cost.
Abstract: Illuminant estimation is a key step for computational color constancy. Instead of using the grey world or grey edge assumptions, we propose in this paper a novel method for illuminant estimation by using the information of grey pixels detected in a given color-biased image. The underlying hypothesis is that most of the natural images include some detectable pixels that are at least approximately grey, which can be reliably utilized for illuminant estimation. We first validate our assumption through comprehensive statistical evaluation on diverse collection of datasets and then put forward a novel grey pixel detection method based on the illuminant-invariant measure (IIM) in three logarithmic color channels. Then the light source color of a scene can be easily estimated from the detected grey pixels. Experimental results on four benchmark datasets (three recorded under single illuminant and one under multiple illuminants) show that the proposed method outperforms most of the state-of-the-art color constancy approaches with the inherent merit of low computational cost.

129 citations

Journal ArticleDOI
TL;DR: Comparisons with competing methods on benchmark real-world databases consistently show the superiority of the proposed methods for both color FR and reconstruction.
Abstract: Collaborative representation-based classification (CRC) and sparse RC (SRC) have recently achieved great success in face recognition (FR). Previous CRC and SRC are originally designed in the real setting for grayscale image-based FR. They separately represent the color channels of a query color image and ignore the structural correlation information among the color channels. To remedy this limitation, in this paper, we propose two novel RC methods for color FR, namely, quaternion CRC (QCRC) and quaternion SRC (QSRC) using quaternion $\ell _{1}$ minimization. By modeling each color image as a quaternionic signal, they naturally preserve the color structures of both query and gallery color images while uniformly coding the query channel images in a holistic manner. Despite the empirical success of CRC and SRC on FR, a few theoretical results are developed to guarantee their effectiveness. Another purpose of this paper is to establish the theoretical guarantee for QCRC and QSRC under mild conditions. Comparisons with competing methods on benchmark real-world databases consistently show the superiority of the proposed methods for both color FR and reconstruction.

129 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
86% related
Image processing
229.9K papers, 3.5M citations
85% related
Feature (computer vision)
128.2K papers, 1.7M citations
85% related
Image segmentation
79.6K papers, 1.8M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202216
2021559
2020643
2019696
2018613
2017496