scispace - formally typeset
Search or ask a question
Topic

Channel (digital image)

About: Channel (digital image) is a research topic. Over the lifetime, 7211 publications have been published within this topic receiving 69974 citations.


Papers
More filters
Proceedings ArticleDOI
16 Jun 2012
TL;DR: A framework that measures patch rarities in each color space and combines them in a final map of all channels from both color systems is proposed, showing the significant advantage of this approach over 10 state-of-the-art saliency models.
Abstract: We introduce a saliency model based on two key ideas. The first one is considering local and global image patch rarities as two complementary processes. The second one is based on our observation that for different images, one of the RGB and Lab color spaces outperforms the other in saliency detection. We propose a framework that measures patch rarities in each color space and combines them in a final map. For each color channel, first, the input image is partitioned into non-overlapping patches and then each patch is represented by a vector of coefficients that linearly reconstruct it from a learned dictionary of patches from natural scenes. Next, two measures of saliency (Local and Global) are calculated and fused to indicate saliency of each patch. Local saliency is distinctiveness of a patch from its surrounding patches. Global saliency is the inverse of a patch's probability of happening over the entire image. The final saliency map is built by normalizing and fusing local and global saliency maps of all channels from both color systems. Extensive evaluation over four benchmark eye-tracking datasets shows the significant advantage of our approach over 10 state-of-the-art saliency models.

392 citations

Proceedings ArticleDOI
15 Oct 2019
TL;DR: Zheng et al. as mentioned in this paper proposed a lightweight information multi-distillation network (IMDN) by constructing the cascaded information multidistillation blocks (IMDB), which contains distillation and selective fusion parts.
Abstract: In recent years, single image super-resolution (SISR) methods using deep convolution neural network (CNN) have achieved impressive results. Thanks to the powerful representation capabilities of the deep networks, numerous previous ways can learn the complex non-linear mapping between low-resolution (LR) image patches and their high-resolution (HR) versions. However, excessive convolutions will limit the application of super-resolution technology in low computing power devices. Besides, super-resolution of any arbitrary scale factor is a critical issue in practical applications, which has not been well solved in the previous approaches. To address these issues, we propose a lightweight information multi-distillation network (IMDN) by constructing the cascaded information multi-distillation blocks (IMDB), which contains distillation and selective fusion parts. Specifically, the distillation module extracts hierarchical features step-by-step, and fusion module aggregates them according to the importance of candidate features, which is evaluated by the proposed contrast-aware channel attention mechanism. To process real images with any sizes, we develop an adaptive cropping strategy (ACS) to super-resolve block-wise image patches using the same well-trained model. Extensive experiments suggest that the proposed method performs favorably against the state-of-the-art SR algorithms in term of visual quality, memory footprint, and inference time. Code is available at \urlhttps://github.com/Zheng222/IMDN.

386 citations

Journal ArticleDOI
Xu Qin1, Zhilin Wang2, Yuanchao Bai1, Xiaodong Xie1, Huizhu Jia1 
03 Apr 2020
TL;DR: Zhang et al. as mentioned in this paper proposed an end-to-end feature fusion at-tention network (FFA-Net) to directly restore the haze-free image, which consists of three key components: Feature Attention (FA) module combines Channel Attention with Pixel Attention mechanism, considering that different channel-wise features contain totally different weighted information and haze distribution is uneven on the different image pixels.
Abstract: In this paper, we propose an end-to-end feature fusion at-tention network (FFA-Net) to directly restore the haze-free image. The FFA-Net architecture consists of three key components:1) A novel Feature Attention (FA) module combines Channel Attention with Pixel Attention mechanism, considering that different channel-wise features contain totally different weighted information and haze distribution is uneven on the different image pixels. FA treats different features and pixels unequally, which provides additional flexibility in dealing with different types of information, expanding the representational ability of CNNs. 2) A basic block structure consists of Local Residual Learning and Feature Attention, Local Residual Learning allowing the less important information such as thin haze region or low-frequency to be bypassed through multiple local residual connections, let main network architecture focus on more effective information. 3) An Attention-based different levels Feature Fusion (FFA) structure, the feature weights are adaptively learned from the Feature Attention (FA) module, giving more weight to important features. This structure can also retain the information of shallow layers and pass it into deep layers.The experimental results demonstrate that our proposed FFA-Net surpasses previous state-of-the-art single image dehazing methods by a very large margin both quantitatively and qualitatively, boosting the best published PSNR metric from 30.23 dB to 36.39 dB on the SOTS indoor test dataset. Code has been made available at GitHub.

382 citations

Journal ArticleDOI
TL;DR: The experimental results show that the presented color demosaicking technique outperforms the existing methods both in PSNR measure and visual perception.
Abstract: Digital cameras sample scenes using a color filter array of mosaic pattern (e.g., the Bayer pattern). The demosaicking of the color samples is critical to the image quality. This paper presents a new color demosaicking technique of optimal directional filtering of the green-red and green-blue difference signals. Under the assumption that the primary difference signals (PDS) between the green and red/blue channels are low pass, the missing green samples are adaptively estimated in both horizontal and vertical directions by the linear minimum mean square-error estimation (LMMSE) technique. These directional estimates are then optimally fused to further improve the green estimates. Finally, guided by the demosaicked full-resolution green channel, the other two color channels are reconstructed from the LMMSE filtered and fused PDS. The experimental results show that the presented color demosaicking technique outperforms the existing methods both in PSNR measure and visual perception.

379 citations

Book ChapterDOI
16 Sep 2018
TL;DR: In this paper, three variants of squeeze and excitation (SE) modules are introduced for image segmentation, i.e., squeezing spatially and exciting channel-wise (cSE), squeezing channelwise and exciting spatially (sSE), and concurrent spatial and channel squeeze & excitation(scSE).
Abstract: Fully convolutional neural networks (F-CNNs) have set the state-of-the-art in image segmentation for a plethora of applications. Architectural innovations within F-CNNs have mainly focused on improving spatial encoding or network connectivity to aid gradient flow. In this paper, we explore an alternate direction of recalibrating the feature maps adaptively, to boost meaningful features, while suppressing weak ones. We draw inspiration from the recently proposed squeeze & excitation (SE) module for channel recalibration of feature maps for image classification. Towards this end, we introduce three variants of SE modules for image segmentation, (i) squeezing spatially and exciting channel-wise (cSE), (ii) squeezing channel-wise and exciting spatially (sSE) and (iii) concurrent spatial and channel squeeze & excitation (scSE). We effectively incorporate these SE modules within three different state-of-the-art F-CNNs (DenseNet, SD-Net, U-Net) and observe consistent improvement of performance across all architectures, while minimally effecting model complexity. Evaluations are performed on two challenging applications: whole brain segmentation on MRI scans and organ segmentation on whole body contrast enhanced CT scans.

379 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
86% related
Image processing
229.9K papers, 3.5M citations
85% related
Feature (computer vision)
128.2K papers, 1.7M citations
85% related
Image segmentation
79.6K papers, 1.8M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202216
2021559
2020643
2019696
2018613
2017496