scispace - formally typeset
Search or ask a question
Topic

Channel length modulation

About: Channel length modulation is a research topic. Over the lifetime, 1790 publications have been published within this topic receiving 34179 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a self-aligned double-gate MOSFET, FinFET was proposed by using boron-doped Si/sub 04/Ge/sub 06/ as a gate material.
Abstract: MOSFETs with gate length down to 17 nm are reported To suppress the short channel effect, a novel self-aligned double-gate MOSFET, FinFET, is proposed By using boron-doped Si/sub 04/Ge/sub 06/ as a gate material, the desired threshold voltage was achieved for the ultrathin body device The quasiplanar nature of this new variant of the vertical double-gate MOSFETs can be fabricated relatively easily using the conventional planar MOSFET process technologies

1,668 citations

Journal ArticleDOI
12 Sep 2012-ACS Nano
TL;DR: The performance limit of short channel MoS(2) transistors is dominated by the large contact resistance from the Schottky barrier between Ni and MoS (2) interface, where a fully transparent contact is needed to achieve a high-performance short channel device.
Abstract: In this article, we investigate electrical transport properties in ultrathin body (UTB) MoS2 two-dimensional (2D) crystals with channel lengths ranging from 2 μm down to 50 nm. We compare the short channel behavior of sets of MOSFETs with various channel thickness, and reveal the superior immunity to short channel effects of MoS2 transistors. We observe no obvious short channel effects on the device with 100 nm channel length (Lch) fabricated on a 5 nm thick MoS2 2D crystal even when using 300 nm thick SiO2 as gate dielectric, and has a current on/off ratio up to ∼109. We also observe the on-current saturation at short channel devices with continuous scaling due to the carrier velocity saturation. Also, we reveal the performance limit of short channel MoS2 transistors is dominated by the large contact resistance from the Schottky barrier between Ni and MoS2 interface, where a fully transparent contact is needed to achieve a high-performance short channel device.

731 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed the ballistic transport of carriers in MOSFETs, and presented the currentvoltage characteristics of the ballistic n-channel MOS-FET.
Abstract: Experiments on ultra‐small metal‐oxide‐semiconductor field effect transistors (MOSFETs) less than 100 nm have been widely reported recently. The frequency of carrier scattering events in these ultra‐small devices is diminished, so that further suppression of carrier scattering may bring these devices close to the regime of ballistic transport. Carrier scattering is suppressed by constructing their channel regions with intrinsic Si and also by low temperature operation. This article proposes the ballistic transport of carriers in MOSFETs, and presents the current‐voltage characteristics of the ballistic n‐channel MOSFET. The current is expressed with the elementary parameters without depending on the carrier mobility. It is independent of the channel length and is proportional to the channel width. The current value saturates as the drain voltage is increased and the triode and the pentode operation are specified as in the conventional MOSFET. Similar current‐voltage characteristics in the ballistic transport regime are also investigated for the p‐channel MOSFET, the dual gate ultra‐thin silicon on insulator MOSFET, and the high electron mobility transistor device. The obtained current gives the maximum current limitation of each field effect transistor geometry. The current control mechanism of ballistic MOSFETs is discussed. The current value is governed by the product of the carrier density near the source edge in the channel, and the velocity with which carriers are injected from the source into the channel.Influence of optical phonon emission to the transport is discussed. It is suggested that if the device is operated with relatively low carrier density at low temperatures, and if the scattering processes other than the optical phonon emission are suppressed so as to attain the ballistic transport, the optical phonon emission is also suppressed and ballistic transport is sustained. A convenient figure of merit to show the ballisticity of carrier transport in an experimental MOSFET is proposed. Its value is estimated for some examples of the recent ultra‐small MOSFET experiment. The proposed current voltage characteristics are evaluated for a dual gate silicon on insulator MOSFET geometry. The result is compared with the recently reported elaborate Monte Carlo simulation with satisfactory agreement.

620 citations

Journal ArticleDOI
Mark Lundstrom1
TL;DR: In this article, a simple one-flux scattering theory of the silicon MOSFET is introduced, where currentvoltage characteristics are expressed in terms of scattering parameters rather than a mobility.
Abstract: A simple one-flux scattering theory of the silicon MOSFET is introduced. Current-voltage (I-V) characteristics are expressed in terms of scattering parameters rather than a mobility. For long-channel transistors, the results reduce to conventional drift-diffusion theory, but they also apply to devices in which the channel length is comparable to or even shorter than the mean-free-path. The results indicate that for very short channels the transconductance is limited by carrier injection from the source. The theory also indicates that evaluation of the drain current in short-channel MOSFETs is a near-equilibrium transport problem, even though the channel electric field is large in magnitude and varies rapidly in space.

602 citations

Journal ArticleDOI
TL;DR: It is shown that at a certain gate bias, the impact of the metal on the channel potential profile extends into the channel for more than one-third of the total channel length from both source and drain sides; hence, most of the channel is affected by the metal.
Abstract: We measure the channel potential of a graphene transistor using a scanning photocurrent imaging technique. We show that at a certain gate bias, the impact of the metal on the channel potential profile extends into the channel for more than one-third of the total channel length from both source and drain sides; hence, most of the channel is affected by the metal. The potential barrier between the metal-controlled graphene and bulk graphene channel is also measured at various gate biases. As the gate bias exceeds the Dirac point voltage, VDirac, the original p-type graphene channel turns into a p-n-p channel. When light is focused on the p-n junctions, an impressive external responsivity of 0.001 A/W is achieved, given that only a single layer of atoms are involved in photon detection.

597 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
91% related
Capacitor
166.6K papers, 1.4M citations
82% related
Chemical vapor deposition
69.7K papers, 1.3M citations
82% related
Silicon
196K papers, 3M citations
81% related
Voltage
296.3K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202230
202111
202016
201915
20189