scispace - formally typeset
Search or ask a question

Showing papers on "Channel state information published in 2010"


Journal ArticleDOI
Thomas L. Marzetta1
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.

6,248 citations


Proceedings ArticleDOI
30 Aug 2010
TL;DR: It is shown that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide, and the rate prediction is as good as the best rate adaptation algorithms for 802.
Abstract: RSSI is known to be a fickle indicator of whether a wireless link will work, for many reasons. This greatly complicates operation because it requires testing and adaptation to find the best rate, transmit power or other parameter that is tuned to boost performance. We show that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide. Our model uses 802.11n Channel State Information measurements as input to an OFDM receiver model we develop by using the concept of effective SNR. It is simple, easy to deploy, broadly useful, and accurate. It makes packet delivery predictions for 802.11a/g SISO rates and 802.11n MIMO rates, plus choices of transmit power and antennas. We report testbed experiments that show narrow transition regions (

697 citations


Journal ArticleDOI
TL;DR: It is shown that very significant downlink throughput is achievable with simple and efficient channel state feedback, provided that the feedback link is properly designed.
Abstract: In this paper, we consider a multiple-input-multiple-output (MIMO) fading broadcast channel and compute achievable ergodic rates when channel state information (CSI) is acquired at the receivers via downlink training and it is provided to the transmitter by channel state feedback. Unquantized (analog) and quantized (digital) channel state feedback schemes are analyzed and compared under various assumptions. Digital feedback is shown to be potentially superior when the feedback channel uses per channel state coefficient is larger than 1. Also, we show that by proper design of the digital feedback link, errors in the feedback have a minor effect even if simple uncoded modulation is used on the feedback channel. We discuss first the case of an unfaded additive white Gaussian noise (AWGN) feedback channel with orthogonal access and then the case of fading MIMO multiple access (MIMO-MAC). We show that by exploiting the MIMO-MAC nature of the uplink channel, a much better scaling of the feedback channel resource with the number of base station (BS) antennas can be achieved. Finally, for the case of delayed feedback, we show that in the realistic case where the fading process has (normalized) maximum Doppler frequency shift 0 ? F < 1/2, a fraction 1 - 2F of the optimal multiplexing gain is achievable. The general conclusion of this work is that very significant downlink throughput is achievable with simple and efficient channel state feedback, provided that the feedback link is properly designed.

684 citations


Journal ArticleDOI
TL;DR: In this paper, an analytical closed-form expression of an achievable secrecy rate was derived for the case of noncolluding eavesdroppers and an upper bound on the secrecy rate is provided.
Abstract: We consider the problem of secure communication with multiantenna transmission in fading channels. The transmitter simultaneously transmits an information-bearing signal to the intended receiver and artificial noise to the eavesdroppers. We obtain an analytical closed-form expression of an achievable secrecy rate and use it as the objective function to optimize the transmit power allocation between the information signal and the artificial noise. Our analytical and numerical results show that equal power allocation is a simple yet near-optimal strategy for the case of noncolluding eavesdroppers. When the number of colluding eavesdroppers increases, more power should be used to generate the artificial noise. We also provide an upper bound on the SNR, above which, the achievable secrecy rate is positive and shows that the bound is tight at low SNR. Furthermore, we consider the impact of imperfect channel state information (CSI) at both the transmitter and the receiver and find that it is wise to create more artificial noise to confuse the eavesdroppers than to increase the signal strength for the intended receiver if the CSI is not accurately obtained.

515 citations


Posted Content
TL;DR: This paper shows that in an MIMO broadcast channel with transmit antennas and receivers each with 1 receive antenna, K/1/2+···+1/K (>;1) degrees of freedom is achievable even when the fed back channel state is completely independent of the current channel state.
Abstract: Transmitter channel state information (CSIT) is crucial for the multiplexing gains offered by advanced interference management techniques such as multiuser MIMO and interference alignment. Such CSIT is usually obtained by feedback from the receivers, but the feedback is subject to delays. The usual approach is to use the fed back information to predict the current channel state and then apply a scheme designed assuming perfect CSIT. When the feedback delay is large compared to the channel coherence time, such a prediction approach completely fails to achieve any multiplexing gain. In this paper, we show that even in this case, the completely stale CSI is still very useful. More concretely, we show that in a MIMO broadcast channel with $K$ transmit antennas and $K$ receivers each with 1 receive antenna, $\frac{K}{1+1/2+ ...+ \frac{1}{K}} (> 1) $ degrees of freedom is achievable even when the fed back channel state is completely independent of the current channel state. Moreover, we establish that if all receivers have independent and identically distributed channels, then this is the optimal number of degrees of freedom achievable. In the optimal scheme, the transmitter uses the fed back CSI to learn the side information that the receivers receive from previous transmissions rather than to predict the current channel state. Our result can be viewed as the first example of feedback providing a degree-of-freedom gain in memoryless channels.

512 citations


Journal ArticleDOI
TL;DR: A closed-form expression is derived for the mean SU capacity under the imperfect CSI scenario where the SU cannot always satisfy the peak received interference power constraint at the PU and has to back off its transmit power.
Abstract: Cognitive radio (CR) design aims to increase spectrum utilization by allowing the secondary users (SUs) to coexist with the primary users (PUs), as long as the interference caused by the SUs to each PU is properly regulated. At the SU, channel-state information (CSI) between its transmitter and the PU receiver is used to calculate the maximum allowable SU transmit power to limit the interference. We assume that this CSI is imperfect, which is an important scenario for CR systems. In addition to a peak received interference power constraint, an upper limit to the SU transmit power constraint is also considered. We derive a closed-form expression for the mean SU capacity under this scenario. Due to imperfect CSI, the SU cannot always satisfy the peak received interference power constraint at the PU and has to back off its transmit power. The resulting capacity loss for the SU is quantified using the cumulative-distribution function of the interference at the PU. Additionally, we investigate the impact of CSI quantization. To investigate the SU error performance, a closed-form average bit-error-rate (BER) expression was also derived. Our results are confirmed through comparison with simulations.

473 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate how the channel state between a wireless transmitter and receiver can be used as the basis for building practical secret key generation protocols between two entities and demonstrate that reliable secret key establishment can be accomplished at rates on the order of 10 b/s.
Abstract: The multipath-rich wireless environment associated with typical wireless usage scenarios is characterized by a fading channel response that is time-varying, location-sensitive, and uniquely shared by a given transmitter-receiver pair. The complexity associated with a richly scattering environment implies that the short-term fading process is inherently hard to predict and best modeled stochastically, with rapid decorrelation properties in space, time, and frequency. In this paper, we demonstrate how the channel state between a wireless transmitter and receiver can be used as the basis for building practical secret key generation protocols between two entities. We begin by presenting a scheme based on level crossings of the fading process, which is well-suited for the Rayleigh and Rician fading models associated with a richly scattering environment. Our level crossing algorithm is simple, and incorporates a self-authenticating mechanism to prevent adversarial manipulation of message exchanges during the protocol. Since the level crossing algorithm is best suited for fading processes that exhibit symmetry in their underlying distribution, we present a second and more powerful approach that is suited for more general channel state distributions. This second approach is motivated by observations from quantizing jointly Gaussian processes, but exploits empirical measurements to set quantization boundaries and a heuristic log likelihood ratio estimate to achieve an improved secret key generation rate. We validate both proposed protocols through experimentations using a customized 802.11a platform, and show for the typical WiFi channel that reliable secret key establishment can be accomplished at rates on the order of 10 b/s.

422 citations


Journal ArticleDOI
TL;DR: This work analyzes the case of distributed cooperation where each base station has only local CSI, either instantaneous or statistical, and justifies distributed precoding design based on a novel virtual signal-to-interference noise ratio (SINR) framework.
Abstract: Base station cooperation is an attractive way of increasing the spectral efficiency in multiantenna communication. By serving each terminal through several base stations in a given area, intercell interference can be coordinated and higher performance achieved, especially for terminals at cell edges. Most previous work in the area has assumed that base stations have common knowledge of both data dedicated to all terminals and full or partial channel state information (CSI) of all links. Herein, we analyze the case of distributed cooperation where each base station has only local CSI, either instantaneous or statistical. In the case of instantaneous CSI, the beamforming vectors that can attain the outer boundary of the achievable rate region are characterized for an arbitrary number of multiantenna transmitters and single-antenna receivers. This characterization only requires local CSI and justifies distributed precoding design based on a novel virtual signal-to-interference noise ratio (SINR) framework, which can handle an arbitrary SNR and achieves the optimal multiplexing gain. The local power allocation between terminals is solved heuristically. Conceptually, analogous results for the achievable rate region characterization and precoding design are derived in the case of local statistical CSI. The benefits of distributed cooperative transmission are illustrated numerically, and it is shown that most of the performance with centralized cooperation can be obtained using only local CSI.

353 citations


Journal ArticleDOI
TL;DR: This work proposes a novel Space-Time Shift Keying (STSK) modulation scheme for Multiple-Input Multiple-Output (MIMO) communication systems, where the concept of SM is extended to include both the space and time dimensions, in order to provide a general shift-keying framework.
Abstract: Motivated by the recent concept of Spatial Modulation (SM), we propose a novel Space-Time Shift Keying (STSK) modulation scheme for Multiple-Input Multiple-Output (MIMO) communication systems, where the concept of SM is extended to include both the space and time dimensions, in order to provide a general shift-keying framework. More specifically, in the proposed STSK scheme one out of Q dispersion matrices is activated during each transmitted block, which enables us to strike a flexible diversity and multiplexing tradeoff. This is achieved by optimizing both the space-time block duration as well as the number of the dispersion matrices in addition to the number of transmit and receive antennas. We will demonstrate that the resultant equivalent system model does not impose any Inter-Channel Interference (ICI), and hence the employment of single-stream Maximum Likelihood (ML) detection becomes realistic at a low-complexity. Furthermore, we propose a Differential STSK (DSTSK) scheme, assisted by the Cayley unitary transform, which does not require any Channel State Information (CSI) at the receiver. Here, the usual error-doubling, caused by the differential decoding, gives rise to 3-dB performance penalty in comparison to Coherent STSK (CSTSK). Additionally, we introduce an enhanced CSTSK scheme, which avoids the requirement of Inter-Antenna Synchronization (IAS) between the RF chains associated with the transmit Antenna Elements (AEs) by imposing a certain constraint on the dispersion matrix design, where each column of the dispersion matrices includes only a single non-zero component. Moreover, according to the turbo-coding principle, the proposed CSTSK and DSTSK schemes are combined with multiple serially concatenated codes and an iterative bit-to-symbol soft-demapper. More specifically, the associated STSK parameters are optimized with the aid of Extrinsic Information Transfer (EXIT) charts, for the sake of achieving a near-capacity performance.

263 citations


Journal ArticleDOI
TL;DR: This paper proposes novel transceiver schemes for the MIMO interference channel based on the mean square error (MSE) criterion and shows that the joint design of transmit precoding matrices and receiving filter matrices with both objectives can be realized through efficient iterative algorithms.
Abstract: Interference alignment (IA) has evolved as a powerful technique in the information theoretic framework for achieving the optimal degrees of freedom of interference channel. In practical systems, the design of specific interference alignment schemes is subject to various criteria and constraints. In this paper, we propose novel transceiver schemes for the MIMO interference channel based on the mean square error (MSE) criterion. Our objective is to optimize the system performance under a given and feasible degree of freedom. Both the total MSE and the maximum per-user MSE are chosen to be the objective functions to minimize. We show that the joint design of transmit precoding matrices and receiving filter matrices with both objectives can be realized through efficient iterative algorithms. The convergence of the proposed algorithms is proven as well. Simulation results show that the proposed schemes outperform the existing IA schemes in terms of BER performance. Considering the imperfection of channel state information (CSI), we also extend the MSE-based transceiver schemes for the MIMO interference channel with CSI estimation error. The robustness of the proposed algorithms is confirmed by simulations.

252 citations


Journal ArticleDOI
TL;DR: This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only.
Abstract: This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only. In contrast to prior results, our expressions apply for arbitrary numbers of antennas and arbitrary relay configurations. We derive an expression for the exact ergodic capacity, simplified closed-form expressions for the high SNR regime, and tight closed-form upper and lower bounds. These results are made possible by employing recent tools from finite-dimensional random matrix theory, which are used to derive new closed-form expressions for various statistical properties of the equivalent AF MIMO dual-hop relay channel, such as the distribution of an unordered eigenvalue and certain random determinant properties. Based on the analytical capacity expressions, we investigate the impact of the system and channel characteristics, such as the antenna configuration and the relay power gain. We also demonstrate a number of interesting relationships between the dual-hop AF MIMO relay channel and conventional point-to-point MIMO channels in various asymptotic regimes.

Journal ArticleDOI
TL;DR: A novel iterative algorithm is presented which attempts to solve the Karush-Kuhn-Tucker (KKT) conditions of the non-convex primal problem at hand and results are provided to assess the performance of the proposed algorithm.
Abstract: We consider a multi-cell wireless network with universal frequency reuse and treat the problem of co-channel interference mitigation in the downlink channel. Assuming that each base station serves multiple single-antenna mobiles via space-division multiple-access, we jointly optimize the linear beam-vectors across a set of coordinated cells and resource slots: the objective function to be maximized is the instantaneous weighted sum-rate subject to per-base-station power constraints. After deriving the general structure of the optimal beam-vectors, a novel iterative algorithm is presented which attempts to solve the Karush-Kuhn-Tucker conditions of the non-convex problem at hand. The proposed algorithm admits a distributed implementation which we illustrate. Also, various approaches to choose the initial beam-vectors are considered, one of which maximizes the signal-to-leakage-plus-noise ratio. Finally, simulation results are provided to assess the performance of the proposed algorithm.

Proceedings Article
16 Jun 2010
TL;DR: It is demonstrated that in a single-user MIMO channel and for low signal-to-noise (SNR) ratios, the relative calibration method can increase the capacity close to the theoretical limit.
Abstract: Channel state information at the transmitter (CSIT) can greatly improve the capacity of a wireless MIMO communication system. In a time division duplex (TDD) system CSIT can be obtained by exploiting the reciprocity of the wireless channel. This however requires calibration of the radio frequency (RF) chains of the receiver and the transmitter, which are in general not reciprocal. In this paper we investigate different methods for relative calibration in the presence of frequency offsets between transmitter and receiver. We show results of theses calibration methods with real two-directional channel measurements, which were performed using the Eure-com MIMO Openair Sounder (EMOS). We demonstrate that in a single-user MIMO channel and for low signal-to-noise (SNR) ratios, the relative calibration method can increase the capacity close to the theoretical limit.

Journal ArticleDOI
TL;DR: An exact expression for the outage probability and an accurate bound for the system's average BER are derived from the performance of a two hop channel state information (CSI)-assisted amplify-and-forward system with co-channel interference at the relay.
Abstract: We analyze the performance of a two hop channel state information (CSI)-assisted amplify-and-forward system, with co-channel interference at the relay. The system's outage probability and the average bit error rate (BER) in the presence of Rayleigh faded multiple interferers are investigated. We derive an exact expression for the outage probability and an accurate bound for the system's average BER. Simulation results show the validity of the analysis and point out the effect of interference.

Journal ArticleDOI
TL;DR: In this article, the performance of a Nt x 1 MISO system setup with maximum likelihood (ML) detection and full CSI at the receiver is analyzed in closed-form.
Abstract: In this paper, we offer an accurate framework for analyzing the performance of wireless communication systems adopting the recently proposed Space Shift Keying (SSK) modulation scheme. More specifically, we study the performance of a Nt x 1 MISO (Multiple-Input-Single-Output) system setup with Maximum-Likelihood (ML) detection and full Channel State Information (CSI) at the receiver. The exact Average Bit Error Probability (ABEP) over generically correlated and non-identically distributed Nakagami-m fading channels is computed in closed-form when Nt=2, while very accurate and asymptotically tight upper bounds are proposed to compute the ABEP when Nt > 2. With respect to current literature, our contribution is threefold: i) the ABEP is computed in closed-form without resorting to Monte Carlo numerical simulations, which, besides being computationally intensive, only yield limited insights about the system performance and cannot be exploited for a systematic optimization of it, ii) the framework accounts for arbitrary fading conditions and is not restricted to identically distributed fading channels, thus offering a comprehensive understanding of the performance of SSK modulation over generalized fading channels, and iii) the analytical framework could be readily adapted to study the performance over generalized fading channels with arbitrary fading distributions, since the Nakagami-m distribution is a very flexible fading model, which either includes or can closely approximate several other fading models. Numerical results show that the performance of SSK modulation is significantly affected by the characteristics of fading channels, {e.g.}, channel correlation, fading severity, and power imbalance among the Nt transmit-receive wireless links. Analytical frameworks and theoretical findings are also substantiated via Monte Carlo simulations.

Proceedings ArticleDOI
23 May 2010
TL;DR: The effects of shifting the location of pilots in time frames used in neighboring cells are studied, and its effectiveness in obtaining better channel estimates, and, thereby, inter-cell interference reduction is studied.
Abstract: This paper considers the problem of interference mitigation in multi-cell multi-antenna time division duplex (TDD) wireless systems for downlink transmission. An efficient way to obtain channel state information (CSI) at the base station is by using uplink pilots and reciprocity of the downlink channel. At the same time, it has been shown that pilots from different cells contaminate each other, resulting in corruption of precoding matrices used by base stations, and high inter-cell interference. This paper studies the effects of shifting the location of pilots in time frames used in neighboring cells, and its effectiveness in obtaining better channel estimates, and, thereby, inter-cell interference reduction.

Journal ArticleDOI
TL;DR: This paper considers a spectrum underlay network, where an OFDM-based cognitive radio (CR) system is allowed to share the subcarriers of an OFDMA-based primary system for simultaneous transmission, and shows that the CR system can achieve a significant rate gain under RLC as compared to IPC.
Abstract: This paper considers a spectrum underlay network, where an OFDM-based cognitive radio (CR) system is allowed to share the subcarriers of an OFDMA-based primary system for simultaneous transmission. Instead of using the conventional interference power constraint (IPC) to protect the primary users (PUs) in the primary system, a new criterion referred to as rate loss constraint (RLC), in the form of an upper bound on the maximum rate loss of each PU due to the CR transmission, is proposed for primary transmission protection. Assuming the channel state information (CSI) of the PU link, the CR link, and their mutual interference links is available to the CR, the optimal power allocation strategy to maximize the achievable rate of the CR system is derived under RLC together with CR?s transmit power constraint. It is shown that the CR system can achieve a significant rate gain under RLC as compared to IPC. Furthermore, the relationship between RLC and IPC is investigated, and it is shown that the rate gain is obtained by exploiting the additional CSI of the PU link. A more general case referred to as hybrid protection to PUs is then studied, by taking into account that some PU links? CSI is not available at CR.

Journal ArticleDOI
TL;DR: A novel and unified communication-theoretic framework for the analysis of channel capacity over fading channels is proposed and it is shown that the framework can handle various fading channel models, communication types, and adaptation transmission policies.
Abstract: Since the trail-blazing paper of C. Shannon in 1948, channel capacity has been regarded as the fundamental information-theoretic performance measure to predict the maximum information rate of a communication system. However, in contrast with the analysis of other important performance measures of wireless communication systems, a unified and general approach for computing the channel capacity over fading channels has yet to be proposed. Motivated by this consideration, we propose a novel and unified communication-theoretic framework for the analysis of channel capacity over fading channels. It is shown that the framework can handle various fading channel models, communication types, and adaptation transmission policies. In particular, the specific contributions of this paper are as follows: (1) We introduce a transform operator, called the E i-transform, which is shown to provide a unified tool to compute the channel capacity with either side information at the receiver or side information at the transmitter and the receiver, directly from the moment-generating function (MGF) or the MGF and the truncated MGF of the Signal-to-Noise-Ratio (SNR) at the receiver, respectively; (2) we show that when either a channel inversion or a truncated channel inversion adaptation policy is considered, the channel capacity can readily be computed from the Mellin or the Hankel transform of the MGF of the received SNR, respectively; (3) a simple yet effective numerical method for the analysis of higher order statistics (HOS) of the channel capacity with side information at the receiver is introduced; and (4) some efficient and ad hoc numerical methods are explicitly introduced to allow the efficient computation of the proposed frameworks. Numerical and simulation results are also shown and compared to substantiate the analytical derivation.

Posted Content
TL;DR: This paper proposes a unified homogeneous quadratically constrained quadratic program (QCQP) formulation that can be applied to all three scenarios, in which different levels of CSI knowledge give rise to either deterministic or probabilistic interference-temperature constraints.
Abstract: In this paper, we study the optimal secondary-link beamforming pattern that balances between the SU's throughput and the interference it causes to PUs in MIMO cognitive radio networks. In particular, we aim to maximize the throughput of the SU, while keeping the interference temperature at the primary receivers below a certain threshold. Unlike traditional MIMO systems, SUs may not have the luxury of knowing the channel state information (CSI) on the links to PUs. This presents a key challenge for a secondary transmitter to steer interference away from primary receivers. In this paper, we consider three scenarios, namely when the secondary transmitter has complete, partial, or no knowledge about the channels to the primary receivers. In particular, when complete CSI is not available, the interference-temperature constraints are to be satisfied with high probability, thus resulting in chance constraints that are typically hard to deal with. Our contribution is fourfold. First, by analyzing the distributional characteristics of MIMO channels, we propose a unified homogeneous QCQP formulation that can be applied to all three scenarios. The homogeneous QCQP formulation, though non-convex, is amenable to semidefinite programming (SDP) relaxation methods. Secondly, we show that the SDP relaxation admits no gap when the number of primary links is no larger than two. Thirdly, we propose a randomized polynomial-time algorithm for constructing a near-optimal solution to the QCQP problem when there are more than two primary links. Finally, we show that when the secondary transmitter has no CSI on the links to primary receivers, the optimal solution to the QCQP problem can be found by a simple matrix eigenvalue-eigenvector computation, which can be done much more efficiently than solving the QCQP directly.

Journal ArticleDOI
TL;DR: In this paper, the ergodic mutual information for MIMO systems in the presence of multiple co-channel interferers and noise was derived for both single-user and multiuser MIMOs.
Abstract: Multiple-input multiple-output (MIMO) systems are being considered as one of the key enabling technologies for future wireless networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is not well understood. In this paper, we develop an analytical framework to characterize the capacity of MIMO communication systems in the presence of multiple MIMO co-channel interferers and noise. We consider the situation in which transmitters have no channel state information, and all links undergo Rayleigh fading. We first generalize the determinant representation of hypergeometric functions with matrix arguments to the case when the argument matrices have eigenvalues of arbitrary multiplicity. This enables the derivation of the distribution of the eigenvalues of Gaussian quadratic forms and Wishart matrices with arbitrary correlation, with application to both single-user and multiuser MIMO systems. In particular, we derive the ergodic mutual information for MIMO systems in the presence of multiple MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of antennas having possibly unequal power levels. This framework, therefore, accommodates the study of distributed MIMO systems and accounts for different spatial positions of the MIMO interferers.

Journal ArticleDOI
TL;DR: In this analysis, new expressions for the system's outage probability and the average bit error rate are derived and the effects of the rank of the relay chosen, the average SNR imbalance, and the correlation between the delayed and current signal-to-noise ratio (SNR) are investigated.
Abstract: We analyze the impact of outdated channel state information due to feedback delay on the performance of amplify-and-forward relays with the kth worst partial relay selection scheme. In our analysis, new expressions for the system's outage probability and the average bit error rate are derived. The effects of the rank of the relay chosen, the average SNR imbalance, and the correlation between the delayed and current signal-to-noise ratio (SNR) on the system performance are investigated. Additionally, simple and accurate outage and average BER approximations are also derived to quantify the performance at high SNR. We also give simulation results to support the theoretical study.

Journal ArticleDOI
TL;DR: This letter devises an iterative algorithm that can efficiently obtain the robust optimal beamforming solution for the multi-antenna cognitive radio (CR) network, which has a single secondary user (SU) and coexists with a primary network of multiple users.
Abstract: This letter considers the multi-antenna cognitive radio (CR) network, which has a single secondary user (SU) and coexists with a primary network of multiple users. Our objective is to maximize the service probability of the SU, subject to the interference constraints on the primary users (PUs) in the form of probability. Exploiting imperfect channel state information (CSI), with its error modeled by added Gaussian noise, we address the optimization for the beamforming weights at the secondary transmitter. In particular, this letter devises an iterative algorithm that can efficiently obtain the robust optimal beamforming solution. For the case with one PU, we show that a much simpler algorithm based on a closed-form solution for the antenna weights of a given power can be presented. Numerical results reveal that the optimal solution for the constructed problem provides an effective means to tradeoff the performance between the PUs and the SU, bridging the non-robust and worst-case based systems.

Journal ArticleDOI
TL;DR: Measurements and models of 30 narrowband multiple-input-multiple-output (MIMO) vehicle-to-vehicle (V2V) radio propagation channels at 5.3 GHz found the large-scale fading was found to be lognormally distributed, whereas the small-scale fades was characterized by the flexible Weibull distribution.
Abstract: In this paper, we describe measurements and models of 30 t 30 narrowband multiple-input-multiple-output (MIMO) vehicle-to-vehicle (V2V) radio propagation channels at 5.3 GHz. Four environments were considered: a campus, a highway, a suburban area, and an urban area. Since the scattering environment may rapidly change in V2V communications, we first investigate the validity of the wide-sense stationarity (WSS) assumption for such channels using the correlation matrix distance (CMD), which is a metric for the characterization of the MIMO channel nonstationarity. Moreover, statistical channel models were developed for these environments, which take into account the non-stationary behavior of the measured V2V channels. The large-scale fading was found to be lognormally distributed, whereas the small-scale fading was characterized by the flexible Weibull distribution. Finally, the non-stationary behavior of both large-scale fading and small-scale fading statistics was investigated.

Posted Content
Mai Vu1
TL;DR: In this article, the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint were established in closed-form for two cases of channel state information: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver.
Abstract: We establish in closed-form the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint. Two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver. For the first case, the optimal signaling scheme is beamforming with the phases of the beam weights matched to the phases of the channel coefficients, but the amplitudes independent of the channel coefficients and dependent only on the constrained powers. For the second case, the optimal scheme is to send independent signals from the antennas with the constrained powers. In both cases, the capacity with per-antenna power constraint is usually less than that with sum power constraint.

Journal ArticleDOI
TL;DR: A new machine-learning framework is proposed that exploits past observations of the error rate and the associated channel-state information to predict the best modulation order and coding rate for new realizations of the channel state without modeling the input-output relationship of the wireless transceiver.
Abstract: Multiple-input-multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) wireless systems use link adaptation to exploit the dynamic nature of wireless environments. Link adaptation maximizes throughput while maintaining target reliability by adaptively selecting the modulation order and coding rate. Link adaptation is extremely challenging, however, due to the difficulty in predicting error rates in OFDM with binary convolutional codes, bit interleaving, MIMO processing, and real channel impairments. This paper proposes a new machine-learning framework that exploits past observations of the error rate and the associated channel-state information to predict the best modulation order and coding rate for new realizations of the channel state without modeling the input-output relationship of the wireless transceiver. Our approach is enabled through our new error-rate expression that is only parameterized by postprocessing signal-to-noise ratios (SNRs), ordered over subcarriers and spatial streams. Using ordered SNRs, we propose a low-dimensional feature set that enables machine learning to increase the accuracy of link adaptation. An IEEE 802.11n simulation study validates the application of this machine-learning framework in real channels and demonstrates the improved performance of SNR ordering as it compares with competing link-quality metrics.

Posted Content
TL;DR: In this article, a secret key agreement scheme for fading erasure wiretap channels is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI).
Abstract: Wyner's work on wiretap channels and the recent works on information theoretic security are based on random codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note, the attempt is to overcome this elusive task by employing the polar coding technique of Ar{\i}kan. It is shown that polar codes achieve non-trivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. Next, fading erasure wiretap channels are considered and a secret key agreement scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI). The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading block, which is then exploited with privacy amplification techniques to generate secret keys.

Journal ArticleDOI
TL;DR: A general two-parameter received signal-to-noise ratio (SNR) model for two-hop amplify-and-forward (AF) relaying that encompasses AF schemes that select the relay gain as the reciprocal of a linear combination of the channel gain and the noise power of the incoming link.
Abstract: We present a general two-parameter received signal-to-noise ratio (SNR) model for two-hop amplify-and-forward (AF) relaying. It encompasses AF schemes that select the relay gain as the reciprocal of a linear combination of the channel gain and the noise power of the incoming link, including all channel-noise-assisted, channel-assisted, and blind relay schemes. Moreover, the model is flexible enough to represent independent source and relay power allocations. A unified performance analysis is then developed for AF relaying over independent but nonidentically distributed Nakagami-m faded links, where m is an integer. Exact analytical expressions are derived for the cumulative-distribution function (cdf), probability density function (pdf), and moment-generating function (mgf) of the received SNR. Monte Carlo simulation results are provided to verify the results.

Journal ArticleDOI
TL;DR: It is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with the normalized Doppler frequency multiplied by the number of transmit antennas.
Abstract: The optimization of the pilot overhead in single-user wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-used block fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with the normalized Doppler frequency multiplied by the number of transmit antennas.

Journal ArticleDOI
TL;DR: This letter proposes a suboptimal, yet efficient, way in which the multicell MISO precoders may be designed at each BS in a distributed manner, as a superposition of so-called virtual SINR maximizations.
Abstract: In this letter, we address the problem of distributed multi-antenna cooperative transmission in a cellular system. Most research in this area has so far assumed that base stations not only have the data dedicated to all the users but also share the full channel state information (CSI). In what follows, we assume that each base station (BS) only has local CSI knowledge. We propose a suboptimal, yet efficient, way in which the multicell MISO precoders may be designed at each BS in a distributed manner, as a superposition of so-called virtual SINR maximizations: a virtual SINR maximizing transmission scheme yields Pareto optimal rates for the MISO Interference Channel (IC); its extension to the multicell MISO channel is shown to provide a distributed precoding scheme achieving a certain fairness optimality for the two link case. We illustrate the performance of our algorithm through Monte Carlo simulations.

Proceedings ArticleDOI
26 Apr 2010
TL;DR: This analysis, in agreement with a number of recent simulation results, shows that conventional MU-MIMO cellular architectures may outperform schemes based on coordinated transmission from base stations, at the negligible cost of a few extra antennas per station.
Abstract: We compare the downlink throughput of various cellular architectures with multi-antenna base stations and multiple single-antenna users per cell, by considering a number of inherent physical layer issues such as path-loss and time and frequency selective fading. In particular, we focus on Multiuser MIMO (MU-MIMO) downlink techniques that require channel state information at the transmitter (CSIT). Our analysis takes explicit account of the cost of CSIT estimation and illuminates the tradeoffs between CSIT, estimation error, and system resource dedicated to training. This tradeoff shows that the number of antennas that can be jointly coordinated (either on the same base station or across multiple base stations) is intrinsically limited not just by “external factors,” such as complexity and rate of the backbone wired network, but by the inherent time and frequency variability of the fading channels. Our analysis, in agreement with a number of recent simulation results, shows that conventional MU-MIMO cellular architectures may outperform schemes based on coordinated transmission from base stations (referred to as Network MIMO schemes, NW-MIMO), at the negligible cost of a few extra antennas per station. In light of these results, it appears that the inherent bottleneck of NW-MIMO systems is not the backbone network (which here is assumed ideal with infinite capacity) but the intrinsic dimensional limitation of estimating the channels.