scispace - formally typeset
Search or ask a question
Topic

Chaperone-mediated autophagy

About: Chaperone-mediated autophagy is a research topic. Over the lifetime, 434 publications have been published within this topic receiving 55025 citations. The topic is also known as: CMA.


Papers
More filters
Journal ArticleDOI
27 Aug 2004-Science
TL;DR: It is found that wild-type α-synuclein was selectively translocated into lysosomes for degradation by the chaperone-mediated autophagy pathway, which may underlie the toxic gain-of-function by the A53T and A30P mutants.
Abstract: Aberrant α-synuclein degradation is implicated in Parkinson's disease pathogenesis because the protein accumulates in the Lewy inclusion bodies associated with the disease. Little is known, however, about the pathways by which wild-type α-synuclein is normally degraded. We found that wild-type α-synuclein was selectively translocated into lysosomes for degradation by the chaperone-mediated autophagy pathway. The pathogenic A53T and A30P α-synuclein mutants bound to the receptor for this pathway on the lysosomal membrane, but appeared to act as uptake blockers, inhibiting both their own degradation and that of other substrates. These findings may underlie the toxic gain-of-function by the mutants.

1,752 citations

Journal ArticleDOI
TL;DR: It was found that not only is α-synuclein degraded by the proteasome, but it is also degraded by autophagy, which merits consideration as a potential therapeutic for Parkinsons disease, as it is designed for chronic use in humans.

1,389 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: A panel of leading experts in the field attempts here to define several autophagy‐related terms based on specific biochemical features to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagic research.
Abstract: Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.

1,095 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: Overexpression of human LGP96 in Chinese hamster ovary cells increased the activity of the selective lysosomal proteolytic pathway in vivo and in vitro.
Abstract: Multiple pathways of protein degradation operate within cells. A selective protein import pathway exists for the uptake and degradation of particular cytosolic proteins by lysosomes. Here, the lysosomal membrane glycoprotein LGP96 was identified as a receptor for the selective import and degradation of proteins within lysosomes. Specific substrates of this proteolytic pathway bound to the cytosolic tail of a 96-kilodalton lysosomal membrane protein in two different binding assays. Overexpression of human LGP96 in Chinese hamster ovary cells increased the activity of the selective lysosomal proteolytic pathway in vivo and in vitro.

873 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
78% related
Programmed cell death
60.5K papers, 3.8M citations
78% related
Phosphorylation
69.3K papers, 3.8M citations
77% related
Protein kinase A
68.4K papers, 3.9M citations
77% related
Transcription factor
82.8K papers, 5.4M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202143
202042
201941
201830
201737