scispace - formally typeset
Search or ask a question
Topic

Charge density

About: Charge density is a research topic. Over the lifetime, 20396 publications have been published within this topic receiving 500443 citations.


Papers
More filters
Book
01 Jan 1990
TL;DR: In this article, the quantum atom and the topology of the charge desnity of a quantum atom are discussed, as well as the mechanics of an atom in a molecule.
Abstract: List of symbols 1. Atoms in chemistry 2. Atoms and the topology of the charge desnity 3. Molecular structure and its change 4. Mathematical models of structural change 5. The quantum atom 6. The mechanics of an atom in a molecule 7. Chemical models and the Laplacian of the charge density 8. The action principle for a quantunm subsystem Appendix - Tables of data Index

11,853 citations

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

Journal ArticleDOI
TL;DR: In this article, a method is presented which utilizes the calculation of the molecular electrostatic potential or the electric field at a discrete number of preselected points to evaluate the environmental effects of a solvent on the properties of a molecular system.

7,618 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm for decomposition of electronic charge density into atomic contributions is presented. But instead of explicitly finding and representing the dividing surfaces, which is a challenging task, the algorithm assigns each point on a regular (x,y,z) grid to one of the regions by following a steepest ascent path on the grid.

7,231 citations

Journal ArticleDOI
TL;DR: This paper describes how accurate off-lattice ascent paths can be represented with respect to the grid points, and maintains the efficient linear scaling of an earlier version of the algorithm, and eliminates a tendency for the Bader surfaces to be aligned along the grid directions.
Abstract: A computational method for partitioning a charge density grid into Bader volumes is presented which is efficient, robust, and scales linearly with the number of grid points. The partitioning algorithm follows the steepest ascent paths along the charge density gradient from grid point to grid point until a charge density maximum is reached. In this paper, we describe how accurate off-lattice ascent paths can be represented with respect to the grid points. This improvement maintains the efficient linear scaling of an earlier version of the algorithm, and eliminates a tendency for the Bader surfaces to be aligned along the grid directions. As the algorithm assigns grid points to charge density maxima, subsequent paths are terminated when they reach previously assigned grid points. It is this grid-based approach which gives the algorithm its efficiency, and allows for the analysis of the large grids generated from plane-wave-based density functional theory calculations.

5,417 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Dielectric
169.7K papers, 2.7M citations
89% related
Oxide
213.4K papers, 3.6M citations
88% related
Scattering
152.3K papers, 3M citations
87% related
Graphene
144.5K papers, 4.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023127
2022333
2021622
2020700
2019659
2018663