scispace - formally typeset
Search or ask a question
Topic

Charge transfer insulators

About: Charge transfer insulators is a research topic. Over the lifetime, 424 publications have been published within this topic receiving 46277 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Abstract: Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. These states are possible due to the combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topological insulators have been observed. Transport experiments on $\mathrm{Hg}\mathrm{Te}∕\mathrm{Cd}\mathrm{Te}$ quantum wells are described that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. Experiments on ${\mathrm{Bi}}_{1\ensuremath{-}x}{\mathrm{Sb}}_{x}$, ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$, ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$, and ${\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}$ are then discussed that establish these materials as 3D topological insulators and directly probe the topology of their surface states. Exotic states are described that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions and may provide a new venue for realizing proposals for topological quantum computation. Prospects for observing these exotic states are also discussed, as well as other potential device applications of topological insulators.

15,562 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: In this article, first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Bi2Se3, SbSe3 and BiSe3 were performed.
Abstract: Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials. First-principles calculations predict that Bi2Se3, Bi2Te3 and Sb2Te3 are topological insulators—three-dimensional semiconductors with unusual surface states generated by spin–orbit coupling—whose surface states are described by a single gapless Dirac cone. The calculations further predict that Bi2Se3 has a non-trivial energy gap larger than the energy scale kBT at room temperature.

4,982 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that electronic orbital ordering is a necessary condition to obtain the correct crystal structure and parameters of the exchange interaction for the Mott-Hubbard insulator.
Abstract: Evidence is presented that within the density-functional theory orbital polarization has to be treated on an equal footing with spin polarization and charge density for strongly interacting electron systems. Using a basis-set independent generalization of the LDA+U functional, we show that electronic orbital ordering is a necessary condition to obtain the correct crystal structure and parameters of the exchange interaction for the Mott-Hubbard insulator ${\mathrm{KCuF}}_{3}$.

3,523 citations

Journal ArticleDOI
10 Mar 2010-Nature
TL;DR: Certain insulators have exotic metallic states on their surfaces that render the electrons travelling on such surfaces insensitive to scattering by impurities, possibly finding uses in technological applications in spintronics and quantum computing.
Abstract: Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in spintronics and quantum computing.

2,501 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
77% related
Electron
111.1K papers, 2.1M citations
76% related
Band gap
86.8K papers, 2.2M citations
75% related
Dielectric
169.7K papers, 2.7M citations
75% related
Phase transition
82.8K papers, 1.6M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20212
20202
20192
201720
201621
201530