scispace - formally typeset
Search or ask a question
Topic

Chemical binding

About: Chemical binding is a research topic. Over the lifetime, 1822 publications have been published within this topic receiving 52516 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A rich energetics of organic–NP binding as a function of molecular coverage for ethanol–nanocalcite system is reported, and a stepwise, yet gradually and continuously evolved ener getics from weak associating to strong bonding to classical capping is revealed.
Abstract: Knowing the nature of interactions between small organic molecules and surfaces of nanoparticles (NP) is crucial for fundamental understanding of natural phenomena and engineering processes. Herein, we report direct adsorption enthalpy measurement of ethanol on a series of calcite nanocrystals, with the aim of mimicking organic–NP interactions in various environments. The energetics suggests a spectrum of adsorption events as a function of coverage: strongest initial chemisorption on active sites on fresh calcite surfaces, followed by major chemical binding to form an ethanol monolayer and, subsequently, very weak, near-zero energy, physisorption. These thermochemical observations directly support a structure where the ethanol monolayer is bonded to the calcite surface through its polar hydroxyl group, leaving the hydrophobic ends of the ethanol molecules to interact only weakly with the next layer of adsorbing ethanol and resulting in a spatial gap with low ethanol density between the monolayer and subsequent added ethanol molecules, as predicted by molecular dynamics and density functional calculations. Such an ordered assembly of ethanol on calcite NP is analogous to, although less strongly bonded than, a capping layer of organics intentionally introduced during NP synthesis, and suggests a continuous variation of surface structure depending on molecular chemistry, ranging from largely disordered surface layers to ordered layers that nevertheless are mobile and can rearrange or be displaced by other molecules to strongly bonded immobile organic capping layers. These differences in surface structure will affect chemical reactions, including the further nucleation and growth of nanocrystals on organic ligand-capped surfaces.

22 citations

Book ChapterDOI
01 Jan 2006
TL;DR: In this article, a new concept for mediating action of humic substances (HS) in the contaminated environment is developed, which defines three scenarios of mitigating activity of HS in the system "living cell-ecotoxicant".
Abstract: A new concept for the mediating action of humic substances (HS) in the contaminated environment is developed. It defines three scenarios of mitigating activity of HS in the system "living cell-ecotoxicant". The first scenario refers to deactivation of ecotoxicants (ET) by HS due to formation of non-toxic and non-bioavailable complexes. It takes place outside of the cell and is defined as "exterior effects". The second scenario refers to deactivation of ET due to HS adsorption onto the cell wall or membrane and is defined as "boundary effects": sorption takes place on the cell surface and implies changes in permeability and structure of the cell membrane. The third scenario refers to amelioration of contaminant toxicity due to activation of systemic resistance to chemical stress. This implies HS participation in immune response activation and is defined as "interior" effects. Viability of this concept was confirmed by the results of detoxification experiments. It was shown that chemical binding ("exterior effects") played a key role in ameliorating toxicity of ecotoxicants (Hg(II) and PAHs) strongly interacting with HS, whereas enhanced immune response ("boundary and interior" effects) was much more operative for a decrease in toxicity of atrazine weakly interacting with HS. The formulated concept provided satisfactory explanations for a vast pool of reported findings of mitigating activity of HS reviewed in the chapter. Few cases of amplified toxicity reported for weakly interacting contaminants in the presence of low molecular weight HS were related to facilitated penetration and follow up dissociation of humic- contaminant complexes in the cell interior. It is concluded that the developed concept can be used as a prospective tool for both predictive modelling of

22 citations

Journal ArticleDOI
TL;DR: A simple chemical route is utilized to decorate ZnO nanoparticles (NP) on the coral-like Cu2O nanowires (NW) surface as a p-n heterojunction photocathode for photoelectrochemical (PEC) hydrogen production as discussed by the authors.

22 citations

Journal ArticleDOI
TL;DR: In the present model, the heterogeneity of the macromolecule is taken into account as well as the chemical binding of the considered metal ions to the humic material, and the interaction of trace metals with humic acid in terms of binding strength increased.
Abstract: Recent extensions of counterion condensation theory, originally developed for well-defined linear polyelectrolytes, enable us to analyze the interaction of trace metals with humic acid. In the present model, the heterogeneity of the macromolecule is taken into account as well as the chemical binding of the considered metal ions to the humic material. Experimentally, potentiometric titrations have been performed for humic acid in solution in the presence of different environmentally important (heavy) metals (Ca, Cd, Cu, Ni, and Pb) at various metal concentrations by titrating with potassium hydroxide without additional salt. From proton release data obtained for the initial point in the titration, it was estimated that the interaction of the different metals with the humic acid in terms of binding strength increased in the order Ca < Cd ≈ Ni < Pb ≈ Cu. These results were confirmed by model analysis. Experimentally obtained apparent dissociation constants were in good agreement for the humic acid systems co...

22 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
83% related
Aqueous solution
189.5K papers, 3.4M citations
83% related
Adsorption
226.4K papers, 5.9M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Raman spectroscopy
122.6K papers, 2.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
202178
202076
201989
201866
201769