scispace - formally typeset
Search or ask a question
Topic

Chemical decomposition

About: Chemical decomposition is a research topic. Over the lifetime, 5210 publications have been published within this topic receiving 127503 citations. The topic is also known as: analysis reaction & chemical decomposition reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors performed experiments on the products of glucose decomposition at short residence times to elucidate the reaction pathways and evaluate kinetics of glucose and fructose decomposition in sub-and supercritical water.
Abstract: Experiments were performed on the products of glucose decomposition at short residence times to elucidate the reaction pathways and evaluate kinetics of glucose and fructose decomposition in sub- and supercritical water. The conditions were a temperature of 300−400 °C and pressure of 25−40 MPa for extremely short residence times between 0.02 and 2 s. The products of glucose decomposition were fructose, a product of isomerization, 1,6-anhydroglucose, a product of dehydration, and erythrose and glyceraldehyde, products of C−C bond cleavage. Fructose underwent reactions similar to glucose except that it did not form 1,6-anhydroglucose and isomerization to glucose is negligible. The mechanism for the products formed from C−C bond cleavage could be explained by reverse aldol condensation and the double-bond rule of the respective enediols formed during the Lobry de Bruyn Alberda van Ekenstein transformation. The differential equations resulting from the proposed pathways were fit to experimental results to obt...

547 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that there are significant changes in chemical and thermal stability of Zr6O4(OH)4 MOFs with the incorporation of different organic linkers.
Abstract: Metal–organic frameworks (MOFs) with the Zr6O4(OH)4 secondary building unit (SBU) have been of particular interest for potential commercial and industrial uses because they can be easily tailored and are reported to be chemically and thermally stable. However, we show that there are significant changes in chemical and thermal stability of Zr6O4(OH)4 MOFs with the incorporation of different organic linkers. As the number of aromatic rings is increased from one to two in 1,4-benzene dicarboxylate (UiO-66, ZrMOF–BDC) and 4,4′-biphenyl dicarboxylate (UiO-67, ZrMOF–BPDC), the Zr6O4(OH)4 SBU becomes more susceptible to chemical degradation by water and hydrochloric acid. Furthermore, as the linker is replaced with 2,2′-bipyridine-5,5′-dicarboxylate (ZrMOF–BIPY) the chemical stability decreases further as the MOF is susceptible to chemical breakdown by protic chemicals such as methanol and isopropanol. The results reported here bring into question the superior structural stability of the UiO-67 analogs as reported by others. Furthermore, the degradation mechanisms proposed here may be applied to other classes of MOFs containing aromatic dicarboxylate organic linkers, in order to predict their structural stability upon exposure to solvents.

535 citations

Journal ArticleDOI
TL;DR: In this article, the thermal decomposition of biologically degradable polymer poly(lactic acid) (PLA) was investigated by means of several thermoanalytical techniques: thermogravimetric, differential scanning calorimetry, time resolved pyrolysis-MS and pyrolynsis-GC/MS.

532 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a surface mechanism for methanol-steam reforming on Cu/ZnO/Al 2 O 3 catalysts which account for all three of the possible overall reactions: (i) hydrogen adsorption does not compete for the active sites which the oxygen-containing species adsorb on, (ii) there are separate active sites for the decomposition reaction distinct from the other two reactions, and (iii) the rate-determining step (RDS) for both the reaction and the reaction is the dehydrogenation of adsorbed
Abstract: Surface mechanisms for methanol–steam reforming on Cu/ZnO/Al 2 O 3 catalysts are developed which account for all three of the possible overall reactions: methanol and steam reacting directly to form H 2 and CO 2 , methanol decomposition to H 2 and CO and the water-gas shift reaction. The elementary surface reactions used in developing the mechanisms were chosen based on a review of the extensive literature concerning methanol synthesis on Cu/ZnO/Al 2 O 3 catalysts and the more limited literature specifically dealing with methanol–steam reforming. The key features of the mechanism are: (i) that hydrogen adsorption does not compete for the active sites which the oxygen-containing species adsorb on, (ii) there are separate active sites for the decomposition reaction distinct from the active sites for the methanol–steam reaction and the water-gas shift reaction, (iii) the rate-determining step (RDS) for both the methanol–steam reaction and the methanol decomposition reaction is the dehydrogenation of adsorbed methoxy groups and (iv) the RDS for the water-gas shift reaction is the formation of an intermediate formate species. A kinetic model was developed based on an analysis of the surface mechanism. Rate data were collected for a large range of conditions using a fixed-bed differential reactor. Parameter estimates for the kinetic model were obtained using multi-response least squares non-linear regression. The resultant model was able to accurately predict both the rates of production of hydrogen, carbon dioxide and of carbon monoxide for a wide range of operating conditions including pressures as high as 33 bar.

521 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that in order to explain the complete range of observed product compositions, rate expressions for all three reactions (methanol-steam reforming, water-gas shift and methanol decomposition) must be included in the kinetic analysis and variations in the selectivity and activity of the catalyst indicate that the decomposition reaction occurs on a different type of active site than the other two reactions.
Abstract: On-board generation of hydrogen by methanol–steam reforming on Cu/ZnO/Al 2 O 3 catalyst is being used in the development of fuel-cell engines for various transportation applications. There has been disagreement concerning the reactions that must be included in the kinetic model of the process. Previous studies have proposed that the process can be modelled as either the decomposition of methanol followed by the water-gas shift reaction or the reaction of methanol and steam, to form CO 2 and hydrogen, perhaps followed by the reverse water-gas shift reaction. Experimental results are presented which clearly show that, in order to explain the complete range of observed product compositions, rate expressions for all three reactions (methanol–steam reforming, water-gas shift and methanol decomposition) must be included in the kinetic analysis. Furthermore, variations in the selectivity and activity of the catalyst indicate that the decomposition reaction occurs on a different type of active site than the other two reactions. Although the decomposition reaction is much slower than the reaction between methanol and steam, it must be included in the kinetic model since the small amount of CO that is produced can drastically reduce the performance of the anode electrocatalyst in low temperature fuel cells.

500 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
93% related
Adsorption
226.4K papers, 5.9M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Alkyl
223.5K papers, 2M citations
90% related
Photocatalysis
67K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202226
202194
2020118
2019109
201893