scispace - formally typeset
Search or ask a question
Topic

Chemical energy

About: Chemical energy is a research topic. Over the lifetime, 2517 publications have been published within this topic receiving 68575 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Abstract: Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid–solution range. The solid–solution range, which is...

6,950 citations

Journal ArticleDOI
TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Abstract: In the previous paper Ralph Brodd and Martin Winter described the different kinds of batteries and fuel cells. In this paper I will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior. The lithium battery industry is undergoing rapid expansion, now representing the largest segment of the portable battery industry and dominating the computer, cell phone, and camera power source industry. However, the present secondary batteries use expensive components, which are not in sufficient supply to allow the industry to grow at the same rate in the next decade. Moreover, the safety of the system is questionable for the large-scale batteries needed for hybrid electric vehicles (HEV). Another battery need is for a high-power system that can be used for power tools, where only the environmentally hazardous Ni/ Cd battery presently meets the requirements. A battery is a transducer that converts chemical energy into electrical energy and vice versa. It contains an anode, a cathode, and an electrolyte. The anode, in the case of a lithium battery, is the source of lithium ions. The cathode is the sink for the lithium ions and is chosen to optimize a number of parameters, discussed below. The electrolyte provides for the separation of ionic transport and electronic transport, and in a perfect battery the lithium ion transport number will be unity in the electrolyte. The cell potential is determined by the difference between the chemical potential of the lithium in the anode and cathode, ∆G ) -EF. As noted above, the lithium ions flow through the electrolyte whereas the electrons generated from the reaction, Li ) Li+ + e-, go through the external circuit to do work. Thus, the electrode system must allow for the flow of both lithium ions and electrons. That is, it must be both a good ionic conductor and an electronic conductor. As discussed below, many electrochemically active materials are not good electronic conductors, so it is necessary to add an electronically conductive material such as carbon * To whom correspondence should be addressed. Phone and fax: (607) 777-4623. E-mail: stanwhit@binghamton.edu. 4271 Chem. Rev. 2004, 104, 4271−4301

5,475 citations

Journal ArticleDOI
TL;DR: Conventional estimates of efficiency in terms of the amount of solar radiation incident at the earth's surface provide ecologists and agronomists with a method for comparing plant productivity under different systems of land use and management and in different * Opening paper read at IBP/UNESCO Meeting on Productivity of Tropical Ecosystems.
Abstract: In thermodynamic terms, ecosystems are machines supplied with energy from an external source, usually the sun. When the input of energy to an ecosystem is exactly equal to its total output of energy, the state of equilibrium which exists is a special case of the First Law of Thermodynamics. The Second Law is relevant too. It implies that in every spontaneous process, physical or chemical, the production of 'useful' energy, which could be harnessed in a form such as mechanical work, must be accompanied by a simultaneous 'waste' of heat. No biological system can break or evade this law. The heat produced by a respiring cell is an inescapable component of cellular metabolism, the cost which Nature has to pay for creating biological order out of physical chaos in the environment of plants and animals. Dividing the useful energy of a thermodynamic process by the total energy involved gives a figure for the efficiency of the process, and this procedure has been widely used to analyse the flow of energy in ecosystems. For example, the efficiency with which a stand of plants produces dry matter by photosynthesis can be defined as the ratio of chemical energy stored in the assimilates to radiant energy absorbed by foliage during the period of assimilation. The choice of absorbed energy as a base for calculating efficiency is convenient but arbitrary. To derive an efficiency depending on the environment of a particular site as well as oil the nature of the vegetation, dry matter production can be related to the receipt of solar energy at the top of the earth's atmosphere. This exercise was attempted by Professor William Thomson, later Lord Kelvin, in 1852. 'The author estimates the mechanical value of the solar heat which, were none of it absorbed by the atmosphere, would fall annually on each square foot of land, at 530 000 000 foot pounds; and infers that probably a good deal more, 1/1000 of the solar heat, which actually falls on growing plants, is converted into mechanical effect.' Outside the earth's atmosphere, a surface kept at right angles to the sun's rays receives energy at a mean rate of 1360 W m-2 or 1f36 kJ m-2 s-1, a figure known as the solar constant. As the energy stored by plants is about 17 kJ per gram of dry matter, the solar constant is equivalent to the production of dry matter at a rate of about 1 g m-2 every 12 s, 7 kg m-2 per day, or 2 6 t m-2 year-'. The annual yield of agricultural crops ranges from a maximum of 30-60 t ha-' in field experiments to less than I t ha-' in some forms of subsistence farming. When these rates are expressed as a fraction of the integrated solar constant, the efficiencies of agricultural systems lie between 0-2 and 0 004%, a range including Kelvin's estimate of 0-1%. Conventional estimates of efficiency in terms of the amount of solar radiation incident at the earth's surface provide ecologists and agronomists with a method for comparing plant productivity under different systems of land use and management and in different * Opening paper read at IBP/UNESCO Meeting on Productivity of Tropical Ecosystems, Makerere University, Uganda, September 1970.

2,278 citations

Journal ArticleDOI
TL;DR: The fundamental principles of energy transfer and photocatalysis are summarized and an overview of the latest progress in energy transfer, light-harvesting, photocatalytic proton and CO2 reduction, and water oxidation using MOFs is provided.
Abstract: Solar energy is an alternative, sustainable energy source for mankind. Finding a convenient way to convert sunlight energy into chemical energy is a key step towards realizing large-scale solar energy utilization. Owing to their structural regularity and synthetic tunability, metal–organic frameworks (MOFs) provide an interesting platform to hierarchically organize light-harvesting antennae and catalytic centers to achieve solar energy conversion. Such photo-driven catalytic processes not only play a critical role in the solar to chemical energy conversion scheme, but also provide a novel methodology for the synthesis of fine chemicals. In this review, we summarize the fundamental principles of energy transfer and photocatalysis and provide an overview of the latest progress in energy transfer, light-harvesting, photocatalytic proton and CO2 reduction, and water oxidation using MOFs. The applications of MOFs in organic photocatalysis and degradation of model organic pollutants are also discussed.

1,717 citations

Journal ArticleDOI
09 May 1997-Science
TL;DR: Fluctuation-driven transport is one mechanism by which chemical energy can directly drive the motion of particles and macromolecules and may find application in a wide variety of fields, including particle separation and the design of molecular motors and pumps.
Abstract: Nonequilibrium fluctuations, whether generated externally or by a chemical reaction far from equilibrium, can bias the Brownian motion of a particle in an anisotropic medium without thermal gradients, a net force such as gravity, or a macroscopic electric field. Fluctuation-driven transport is one mechanism by which chemical energy can directly drive the motion of particles and macromolecules and may find application in a wide variety of fields, including particle separation and the design of molecular motors and pumps.

1,184 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
81% related
Catalysis
400.9K papers, 8.7M citations
81% related
Carbon
129.8K papers, 2.7M citations
80% related
Aqueous solution
189.5K papers, 3.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202360
2022124
2021131
2020160
2019158
2018158