scispace - formally typeset
Search or ask a question
Topic

Chemical graph theory

About: Chemical graph theory is a research topic. Over the lifetime, 268 publications have been published within this topic receiving 8493 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the structural dependence of the Huckel total φ-electron energy on the molecular topology of conjugated molecules has been studied and general rules governing the structural properties of the φ energy in conjugate molecules have been derived.

1,706 citations

BookDOI
TL;DR: In this article, the authors present a classification scheme for Monocyclic systems based on the Huckel Spectrum and the Cayley Generation Functions. But they do not discuss the role of Kekule structures in chemistry.
Abstract: INTRODUCTION. ELEMENTS OF GRAPH THEORY. The Definition of a Graph. Isomorphic Graphs and Graph Automorphism. Walks, Trails, Paths, Distances and Valencies in Graphs. Subgraphs. Regular Graphs. Trees. Planar Graphs. The Story of the Koenigsberg Bridge Problem and Eulerian Graphs. Hamiltonian Graphs. Line Graphs. Vertex Coloring of a Graph. CHEMICAL GRAPHS. The Concept of a Chemical Graph. Molecular Topology. Huckel Graphs. Polyhexes and Benzenoid Graphs. Weighted Graphs. GRAPH-THEORETICAL MATRICES. The Adjacency Matrix. The Distance Matrix. THE CHARACTERISTIC POLYNOMIAL OF A GRAPH. The Definition of the Characteristic Polynomial. The Method of Sachs for Computing the Characteristic Polynomial. The Characteristic Polynomials of Some Classes of Simple Graphs. The Le Verrier-Faddeev-Frame Method for Computing the Characteristic Polynomial. TOPOLOGICAL ASPECTS OF HUECKEL THEORY. Elements of Huckel Theory. Isomorphism of Huckel Theory and Graph Spectral Theory. The Huckel Spectrum. Charge Densities and Bond Orders in Conjugated Systems. The Two-Color Problem in Huckel Theory. Eigenvalues of Linear Polyenes. Eigenvalues of Annulenes. Eigenvalues of Moebius Annulenes. A Classification Scheme for Monocyclic Systems. Total p-Electron Energy. TOPOLOGICAL RESONANCE ENERGY. Huckel Resonance Energy. Dewar Resonance Energy. The Concept of Topological Resonance Energy. Computation of the Acyclic Polynomial. Applications of the TRE Model. ENUMERATION OF KEKULE VALENCE STRUCTURES. The Role of Kekule Valence Structures in Chemistry. The Identification of Kekule Systems. Methods for the Enumeration of Kekule Structures. The Concept of Parity of Kekule Structures. THE CONJUGATED-CIRCUIT MODEL. The Concept of Conjugated Circuits. The p-Resonance Energy Expression. Selection of the Parameters. Computational Procedure. Applications of the Conjugated-Circuit Model. Parity of Conjugated Circuits. TOPOLOGICAL INDICES. Definitions of Topological Indices. The Three-Dimensional Wiener Number. ISOMER ENUMERATION. The Cayley Generation Functions. The Henze-Blair Approach. The Polya Enumeration Method. The Enumeration Method Based on the N-Tuple Code.

1,473 citations

Book
01 Jan 1986
TL;DR: In this paper, the authors define the topology of a graph as follows: 1.1 Topology in Chemistry, 2.2 Geometry, Symmetry, Topology, Graph Automorphisms, and Graph Topology.
Abstract: A Chemistry and Topology.- 1 Topological Aspects in Chemistry.- 1.1 Topology in Chemistry.- 1.2 Abstraction in Science and How Far One Can Go.- 2 Molecular Topology.- 2.1 What is Molecular Topology?.- 2.2 Geometry, Symmetry, Topology.- 2.3 Definition of Molecular Topology.- B Chemistry and Graph Theory.- 3 Chemical Graphs.- 4 Fundamentals of Graph Theory.- 4.1 The Definition of a Graph.- 4.1.1 Relations.- 4.1.2 The First Definition of a Graph.- 4.1.3 The Second Definition of a Graph.- 4.1.4 Vertices and Edges.- 4.1.5 Isomorphic Graphs and Graph Automorphisms.- 4.1.6 Special Graphs.- 4.2 Subgraphs.- 4.2.1 Sachs Graphs.- 4.2.2 Matchings.- 4.3 Graph Spectral Theory.- 4.3.1 The Adjacency Matrix.- 4.3.2 The Spectrum of a Graph.- 4.3.3 The Sachs Theorem.- 4.3.4 The ?-Polynomial.- 4.4 Graph Operations.- 5 Graph Theory and Molecular Orbitals.- 6 Special Molecular Graphs.- 6.1 Acyclic Molecules.- 6.1.1 Trees.- 6.1.2 The Path and the Star.- 6.1.3 The Characteristic Polynomial of Trees.- 6.1.4 Trees with Greatest Number of Matchings.- 6.1.5 The Spectrum of the Path.- 6.2 The Cycle.- 6.3 Alternant Molecules.- 6.3.1 Bipartite Graphs.- 6.3.2 The Pairing Theorem.- 6.3.3 Some Consequences of the Pairing Theorem.- 6.4 Benzenoid Molecules.- 6.4.1 Benzenoid Graphs.- 6.4.2 The Characteristic Polynomial of Benzenoid Graphs.- 6.5 Hydrocarbons and Molecules with Heteroatoms.- 6.5.1 On the Question of the Molecular Graph.- 6.5.2 The Characteristic Polynomial of Weighted Graphs.- 6.5.3 Some Regularities in the Electronic Structure of Heteroconjugated Molecules.- C Chemistry and Group Theory.- 7 Fundamentals of Group Theory.- 7.1 The Symmetry Group of an Equilateral Triangle.- 7.2 Order, Classes and Representations of a Group.- 7.3 Reducible and Irreducible Representations.- 7.4 Characters and Reduction of a Reducible Representation.- 7.5 Subgroups and Sidegroups - Products of Groups.- 7.6 Abelian Groups.- 7.7 Abstract Groups and Group Isomorphism.- 8 Symmetry Groups.- 8.1 Notation of Symmetry Elements and Representations.- 8.2 Some Symmetry Groups.- 8.2.1 Rotation Groups.- 8.2.2 Groups with More than One n-Fold Axis, n > 2.- 8.2.3 Groups of Collinear Molecules.- 8.3 Transformation Properties and Direct Products of Irreducible Representations.- 8.3.1 Transformation Properties.- 8.3.2 Rules Concerning the Direct Product of Irreducible Representations.- 8.4 Some Applications of Symmetry Groups.- 8.4.1 Electric Dipole Moment.- 8.4.2 Polarizability.- 8.4.3 Motions of Atomic Nuclei: Translations, Rotations and Vibrations.- 8.4.4 Transition Probabilities for the Absorption of Light.- 8.4.5 Transition Probabilities in Raman Spectra.- 8.4.6 Group Theory and Quantum Chemistry.- 8.4.7 Orbital and State Correlations.- 9 Automorphism Groups.- 9.1 Automorphism of a Graph.- 9.2 The Automorphism Group A(G1).- 9.3 Cycle Structure of Permutations.- 9.4 Isomorphism of Graphs and of Automorphism Groups 112..- 9.5 Notation of some Permutation Groups.- 9.6 Direct Product and Wreath Product.- 9.7 The Representation of Automorphism Groups as Group Products.- 10 Some Interrelations between Symmetry and Automorphism Groups.- 10.1 The Idea of Rigid Molecules.- 10.2 Local Symmetries.- 10.3 Non-Rigid Molecules.- 10.4 What Determines the Respective Orders of the Symmetry and the Automorphism Group of a Given Molecule?.- D Special Topics.- 11 Topological Indices.- 11.1 Indices Based on the Distance Matrix.- 11.1.1 The Wiener Number and Related Quantities.- 11.1.2 Applications of the Wiener Number.- 11.2 Hosoya's Topological Index.- 11.2.1 Definition and Chemical Applications of Hosoya's Index.- 11.2.2 Mathematical Properties of Hosoya's Index.- 11.2.3 Example: Hosoya's Index of the Path and the Cycle.- 11.2.4 Some Inequalities for Hosoya's Index.- 12 Thermodynamic Stability of Conjugated Molecules.- 12.1 Total ?-Electron Energy and Thermodynamic Stability of Conjugated Molecules.- 12.2 Total ?-Electron Energy and Molecular Topology.- 12.3 The Energy of a Graph.- 12.4 The Coulson Integral Formula.- 12.5 Some Further Applications of the Coulson Integral Formula.- 12.6 Bounds for Total ?-Electron Energy.- 12.7 More on the McClelland Formula.- 12.8 Conclusion: Factors Determining the Total ?-Electron Energy.- 12.9 Use of Total ?-Electron Energy in Chemistry.- 13 Topological Effect on Molecular Orbitals.- 13.1 Topologically Related Isomers.- 13.2 Interlacing Rule.- 13.3 PE Spectra of Topomers.- 13.4 TEMO and a-Electron Systems.- 13.5 TEMO and Symmetry.- Appendices.- Appendix 1 Matrices.- Appendix 2 Determinants.- Appendix 3 Eigenvalues and Eigenvectors.- Appendix 4 Polynomials.- Appendix 5 Characters of Irreducible Representations of Symmetry Groups.- Appendix 6 The Symbols Used.- Literature.- References.

1,283 citations

Journal ArticleDOI
TL;DR: The geometrical arithmetic index (GA) as discussed by the authors is a topological index based on the end-vertex degrees of edges and its basic features are presented in this paper.
Abstract: Research on the topological indices based on end-vertex degrees of edges has been intensively rising recently. Randic index, one of the best-known topological indices in chemical graph theory, is belonging to this class of indices. In this paper, we introduce a novel topological index based on the end-vertex degrees of edges and its basic features are presented here. We named it as geometrical-arithmetic index (GA).

525 citations

Journal ArticleDOI
TL;DR: The electrotopological state, a novel representation of atoms in molecules, is developed from chemical graph theory as an index of the graph vertex (or skeletal group), which combines both the electronic character and the topological environment of each skeletal atom in a molecule.
Abstract: The electrotopological state, a novel representation of atoms in molecules, is developed from chemical graph theory as an index of the graph vertex (or skeletal group). This new index combines both the electronic character and the topological environment of each skeletal atom in a molecule. The electrotopological state (E-state) of a skeletal atom is formulated as an intrinsic value I i plus a perturbation term, ΔI i , arising from the electronic interaction and modified by the molecular topological environment of each atom in the molecule

301 citations


Network Information
Related Topics (5)
Matrix (mathematics)
105.5K papers, 1.9M citations
71% related
Polynomial
52.6K papers, 853.1K citations
69% related
Graph theory
20.8K papers, 691.4K citations
69% related
Differential equation
88K papers, 2M citations
69% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202139
202037
201918
201825
201711