scispace - formally typeset
Search or ask a question

Showing papers on "Chemical vapor deposition published in 2003"


Journal ArticleDOI
TL;DR: A low-temperature, large-scale, and versatile synthetic process is needed before ZnO nanowire arrays find realistic applications in solar energy conversion, light emission, and other promising areas, and the ease of commercial scale-up is presented.
Abstract: Since the first report of ultraviolet lasing from ZnO nanowires, substantial effort has been devoted to the development of synthetic methodologies for one-dimensional ZnO nanostructures. Among the various techniques described in the literature, evaporation and condensation processes are favored for their simplicity and high-quality products, but these gas-phase approaches generally require economically prohibitive temperatures of 800–900 8C. Despite recent MOCVD schemes that reduced the deposition temperature to 450 8C by using organometallic zinc precursors, the commercial potential of gas-phase-grown ZnO nanowires remains constrained by the expensive and/or insulating (for example, Al2O3) substrates required for oriented growth, as well as the size and cost of the vapor deposition systems. A low-temperature, large-scale, and versatile synthetic process is needed before ZnO nanowire arrays find realistic applications in solar energy conversion, light emission, and other promising areas. Solution approaches to ZnO nanowires are appealing because of their low growth temperatures and good potential for scale-up. In this regard, Vayssieres et al. developed a hydrothermal process for producing arrays of ZnO microrods and nanorods on conducting glass substrates at 95 8C. Recently, a seeded growth process was used to make helical ZnO rods and columns at a similar temperature. Here we expand on these synthetic methods to produce homogeneous and dense arrays of ZnO nanowires that can be grown on arbitrary substrates under mild aqueous conditions. We present data for arrays on four-inch (ca. 10 cm) silicon wafers and two-inch plastic substrates, which demonstrate the ease of commercial scale-up. The simple two-step procedure yields oriented nanowire films with the largest surface area yet reported for nanowire arrays. The growth process ensures that a majority of the nanowires in the array are in direct contact with the substrate and provide a continuous pathway for carrier transport, an important feature for future electronic devices based on these materials. Well-aligned ZnO nanowire arrays were grown using a simple two-step process. In the first step, ZnO nanocrystals (5–10 nm in diameter) were spin-cast several times onto a four-inch Si(100) wafer to form a 50–200-nm thick film of crystal seeds. Between coatings, the wafer was annealed at 150 8C to ensure particle adhesion to the wafer surface. The ZnO nanocrystals were prepared according to the method of Pacholski. A NaOH solution in methanol (0.03m) was added slowly to a solution of zinc acetate dihydrate (0.01m) in methanol at 60 8C and stirred for two hours. The resulting nanoparticles are spherical and stable for at least two weeks in solution. After uniformly coating the silicon wafer with ZnO nanocrystals, hydrothermal ZnO growth was carried out by suspending the wafer upside-down in an open crystallizing dish filled with an aqueous solution of zinc nitrate hydrate (0.025m) and methenamine or diethylenetriamine (0.025m) at 90 8C. Reaction times spanned from 0.5 to 6 h. The wafer was then removed from solution, rinsed with deionized water, and dried. A field-emission scanning electron microscope (FESEM) was used to examine the morphology of the nanowire array across the entire wafer, while single nanowires were characterized by transmission electron microscopy (TEM). Nanowire crystallinity and growth direction were analyzed by X-ray diffraction and electron diffraction techniques. SEM images taken of several four-inch samples showed that the entire wafer was coated with a highly uniform and densely packed array of ZnO nanowires (Figure 1). X-ray diffraction (not shown) gave a wurtzite ZnO pattern with an enhanced (002) peak resulting from the vertical orientation of the nanowires. A typical synthesis (1.5 h) yielded wires with diameters ranging between 40–80 nm and lengths of 1.5–2 mm.

1,676 citations


Journal ArticleDOI
TL;DR: Chemical Vapour Deposition (CVD) involves the chemical reactions of gaseous reactants on or near the vicinity of a heated substrate surface as mentioned in this paper, which can provide highly pure materials with structural control at atomic or nanometer scale level.

1,379 citations


Journal ArticleDOI
TL;DR: In this paper, the etch rates of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared.
Abstract: Samples of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared: single-crystal silicon with two doping levels, polycrystalline silicon with two doping levels, polycrystalline germanium, polycrystalline SiGe, graphite, fused quartz, Pyrex 7740, nine other preparations of silicon dioxide, four preparations of silicon nitride, sapphire, two preparations of aluminum oxide, aluminum, Al/2%Si, titanium, vanadium, niobium, two preparations of tantalum, two preparations of chromium, Cr on Au, molybdenum, tungsten, nickel, palladium, platinum, copper, silver, gold, 10 Ti/90 W, 80 Ni/20 Cr, TiN, four types of photoresist, resist pen, Parylene-C, and spin-on polyimide. Selected samples were etched in 35 different etches: isotropic silicon etchant, potassium hydroxide, 10:1 HF, 5:1 BHF, Pad Etch 4, hot phosphoric acid, Aluminum Etchant Type A, titanium wet etchant, CR-7 chromium etchant, CR-14 chromium etchant, molybdenum etchant, warm hydrogen peroxide, Copper Etchant Type CE-200, Copper Etchant APS 100, dilute aqua regia, AU-5 gold etchant, Nichrome Etchant TFN, hot sulfuric+phosphoric acids, Piranha, Microstrip 2001, acetone, methanol, isopropanol, xenon difluoride, HF+H/sub 2/O vapor, oxygen plasma, two deep reactive ion etch recipes with two different types of wafer clamping, SF/sub 6/ plasma, SF/sub 6/+O/sub 2/ plasma, CF/sub 4/ plasma, CF/sub 4/+O/sub 2/ plasma, and argon ion milling. The etch rates of 620 combinations of these were measured. The etch rates of thermal oxide in different dilutions of HF and BHF are also reported. Sample preparation and information about the etches is given.

1,256 citations


Journal ArticleDOI
10 Apr 2003-Nature
TL;DR: An ‘epitaxial casting’ approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30–200 nm and wall thicknesses of 5–50‬nm is reported, applicable to many other semiconductor systems.
Abstract: Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

1,169 citations


Journal ArticleDOI
TL;DR: In this paper, the authors have shown that PECVD of tetramethylcyclotetrasiloxane (TMCTS) produces a highly crosslinked networked SiCOH film.
Abstract: Carbon doped oxide dielectrics comprised of Si, C, O, and H (SiCOH) have been prepared by plasma enhanced chemical vapor deposition (PECVD) from mixtures of tetramethylcyclotetrasiloxane (TMCTS) and an organic precursor. The films have been analyzed by determining their elemental composition and by Fourier transform infrared spectroscopy with deconvolution of the absorption peaks. The analysis has shown that PECVD of TMCTS produces a highly crosslinked networked SiCOH film. Dissociation of TMCTS appears to dominate the deposition chemistry as evidenced by the multitude of bonding environments and formation of linear chains and branches. Extensive crosslinking of TMCTS rings occurs through Si–Si, Si–CH2–Si, Si–O–Si, and Si–CH2–O–Si moieties. The films deposited from mixtures of TMCTS and organic precursor incorporate hydrocarbon fragments into the films. This incorporation occurs most probably through the reaction of the organic precursor and the Si–H bonds of TMCTS. Annealing the SiCOH films deposited fro...

600 citations


Journal ArticleDOI
TL;DR: In this article, carbon nanotubes (CNTs) deposited by plasmaenhanced chemical vapor deposition on Si3N4/Si substrates have been investigated as resistive gas sensors for NO2.
Abstract: Carbon nanotubes (CNTs) deposited by plasma-enhanced chemical vapor deposition on Si3N4/Si substrates have been investigated as resistive gas sensors for NO2. Upon exposure to NO2, the electrical resistance of the CNTs was found to decrease. The maximum variation of resistance to NO2 was found at an operating temperature of around 165 °C. The sensor exhibited high sensitivity to NO2 gas at concentrations as low as 10 ppb, fast response time, and good selectivity. A thermal treatment method, based on repeated heating and cooling of the films, adjusted the resistance of the sensor film and optimized the sensor response to NO2.

532 citations


Journal ArticleDOI
TL;DR: In this article, the p-type gallium nitride nanowires were synthesized using metal-catalyzed chemical vapor deposition (CVD) and were found to have single-crystal structures with a 〈0001〉 growth axis that is consistent with substrate epitaxy.
Abstract: Magnesium-doped gallium nitride nanowires have been synthesized via metal-catalyzed chemical vapor deposition. Nanowires prepared on c-plane sapphire substrates were found to grow normal to the substrate, and transmission electron microscopy studies demonstrated that the nanowires had single-crystal structures with a 〈0001〉 growth axis that is consistent with substrate epitaxy. Individual magnesium-doped gallium nitride nanowires configured as field-effect transistors exhibited systematic variations in two-terminal resistance as a function of magnesium dopant incorporation, and gate-dependent conductance measurements demonstrated that optimally doped nanowires were p-type with hole mobilities of ca. 12 cm2/V‚s. In addition, transport studies of crossed gallium nitride nanowire structures assembled from p- and n-type materials show that these junctions correspond to well-defined p-n diodes. In forward bias, the p-n crossed nanowire junctions also function as nanoscale UV-blue light emitting diodes. The new synthesis of p-type gallium nitride nanowire building blocks opens up significant potential for the assembly of nanoscale electronics and photonics. Semiconductor nanowires (NWs) have demonstrated significant potential as fundamental building blocks for nanoelectronic and nanophotonic devices and also offer substantial

497 citations


Journal ArticleDOI
TL;DR: In this article, single-crystal Ge nanowires are synthesized by a low-temperature (275°C) chemical vapor deposition (CVD) method, and Boron doped p-type GeNW field effect transistors (FETs) with back-gates and thin SiO2 (10 nm) gate insulators are constructed.
Abstract: Single-crystal Ge nanowires are synthesized by a low-temperature (275 °C) chemical vapor deposition (CVD) method. Boron doped p-type GeNW field-effect transistors (FETs) with back-gates and thin SiO2 (10 nm) gate insulators are constructed. Hole mobility higher than 600 cm2/V s is observed in these devices, suggesting high quality and excellent electrical properties of as-grown Ge wires. In addition, integration of high-κ HfO2 (12 nm) gate dielectric into nanowire FETs with top-gates is accomplished with promising device characteristics obtained. The nanowire synthesis and device fabrication steps are all performed below 400 °C, opening a possibility of building three-dimensional electronics with CVD-derived Ge nanowires.

446 citations


Journal ArticleDOI
TL;DR: In this paper, the fabrication of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates is described.
Abstract: We report on the fabrication of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Hydride vapor phase epitaxy was used to grow p-type AlGaN, while chemical vapor deposition was used to produce the n-type ZnO layers. Diode-like, rectifying I-V characteristics, with threshold voltage ~3.2V and low reverse leakage current ~10(-7)A, are observed at room temperature. Intense ultraviolet emission with a peak wavelength near 389 mn is observed when the diode is forward biased; this emission is found to be stable at temperatures up to 500K and shown to originate from recombination within the ZnO.

445 citations


Journal ArticleDOI
01 Feb 2003-Carbon
TL;DR: In this paper, high purity, aligned multi-wall carbon nanotube films were grown on quartz substrates by injecting a solution of ferrocene in toluene into a suitable reaction furnace.

443 citations


Journal ArticleDOI
TL;DR: In this article, the atomic layer deposition (ALD) was used to grow a thin platinum thin film at 300 °C by using methylcyclopentadienyl trimethylplatinum (MeCpPtMe3) and oxygen as precursors.
Abstract: Platinum thin films were grown at 300 °C by atomic layer deposition (ALD) using (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and oxygen as precursors. The films had excellent uniformity, low resistivity, and low-impurity contents. Structural studies by X-ray diffraction showed that the films were strongly (111) oriented. Growth rates of 0.45 A cycle-1 were obtained with 4 s total cycle times. The film thickness was found to linearly depend on the number of the reaction cycles. Also, the possible reaction mechanism is discussed.

Journal ArticleDOI
TL;DR: In this article, high-quality gallium nitride nanowires have been synthesized via metal-initiated metalorganic chemical vapor deposition for the first time, and excellent substrate coverage was observed for wires prepared on silicon, c-plane, and a-plane sapphire substrates.
Abstract: High-quality gallium nitride nanowires have been synthesized via metal-initiated metalorganic chemical vapor deposition for the first time. Excellent substrate coverage was observed for wires prepared on silicon, c-plane, and a-plane sapphire substrates. The wires were formed via the vapor−liquid−solid mechanism with gold, iron, or nickel as growth initiators and were found to have widths of 15-200 nm. Transmission electron microscopy confirmed that the wires were single-crystalline and were oriented predominantly along the [210] or [110] direction. Wires growing along the [210] orientation were found to have triangular cross-sections. Transport measurements confirmed that the wires were n-type and had electron mobilities of ∼65 cm2/V·s. Photoluminescence measurements showed band edge emission at 3.35 eV (at 5 K), with a marked absence of low-energy emission from impurity defects.

Patent
Saitoh Takehiro1
27 Feb 2003
TL;DR: In this article, a tensile tensile stress is formed on the substrate to relax a compressive stress existing in the channel region, and the second nitride layer having actual compressive stresses is formed to cover the p-channel MOSFET.
Abstract: A semiconductor device improves the electron mobility in the n-channel MOSFET and reduces the bend or warp of the semiconductor substrate or wafer. The first nitride layer having a tensile stress is formed on the substrate to cover the n-channel MOSFET. The tensile stress of the first nitride layer serves to relax a compressive stress existing in the channel region. The second nitride layer having an actual compressive stress is formed on the substrate to cover the p-channel MOSFET. The first and second nitride layers serve to decrease bend or warp of the substrate. Preferably, the first nitride layer is a nitride layer of Si formed by a LPCVD process, and the second nitride layer is a nitride layer of Si formed by a PECVD process.

Journal ArticleDOI
TL;DR: The acceptor binding energy was determined to be about 107 meV, which agrees well with that estimated from a hydrogen-atom-like acceptor model as discussed by the authors, and was attributed to neutral acceptor-bound exciton emission.
Abstract: High-quality ZnO rods were formed directly on sapphire (0001) substrates by metalorganic chemical vapor deposition. The rods exhibited free exciton and very sharp bound exciton emissions at low temperatures. By increasing the excitation intensity, biexciton emission was observed. Temperature dependence of the emission spectra suggested that the emission peak at ∼3.315 eV, which had been attributed to neutral acceptor-bound exciton emission, is due to donor-acceptor pairs. The acceptor binding energy was determined to be about 107 meV, which agrees well with that estimated from a hydrogen-atom-like acceptor model.

Journal ArticleDOI
Negar Naghavi1, S. Spiering, Michael Powalla, B. Cavana, Daniel Lincot1 
TL;DR: In this paper, the formation of indium sulfide buffer layers for high-efficiency copper indium gallium diselenide (CIGS) thin-film solar cells with atomic layer chemical vapour deposition (ALCVD) was studied.
Abstract: This paper presents optimization studies on the formation of indium sulfide buffer layers for high-efficiency copper indium gallium diselenide (CIGS) thin-film solar cells with atomic layer chemical vapour deposition (ALCVD) from separate pulses of indium acetylacetonate and hydrogen sulfide. A parametric study of the effect of deposition temperature between 160° and 260°C and thickness (15–30 nm) shows an optimal value at about 220°C for a layer thickness of 30 nm, leading to an efficiency of 16·4%. Analysis of the device shows that indium sulfide layers are characterised by an improvement of the blue response of the cells compared with a standard CdS-processed cell, due to a high apparent band gap (2·7–2·8 eV), higher open-circuit voltages (up to 665 mV) and fill factor (78%). This denotes high interface quality. Atomic diffusion processes of sodium and copper in the buffer layer are demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.

Journal ArticleDOI
01 Jan 2003-Carbon
TL;DR: In this article, the authors obtained ultra-high purity multi-walled carbon nanotubes (MWNTs), which were produced by a catalytic chemical vapor deposition method and subsequently annealed at vacuum pressures between 10 −3 and 10 Pa and temperatures between 1500 and 2150°C.

Journal ArticleDOI
TL;DR: In this paper, a detailed growth study using electron microscopy, focused ion beam preparation, and Raman spectroscopy was presented using plasma enhanced chemical vapor deposition using silane as the Si source and gold as the catalyst.
Abstract: Silicon nanowires were selectively grown at temperatures below 400 °C by plasma enhanced chemical vapor deposition using silane as the Si source and gold as the catalyst. A detailed growth study is presented using electron microscopy, focused ion beam preparation, and Raman spectroscopy. A radio-frequency plasma significantly increased the growth rate. The Si nanowires show an uncontaminated, crystalline silicon core surrounded by a 2-nm-thick oxide sheath. The as-grown diameters are small enough for the observation of quantum confinement effects. Plasma activation could allow a further decrease in deposition temperature. A growth model for plasma enhanced nanowire growth is discussed.

Journal ArticleDOI
01 Oct 2003-Wear
TL;DR: In this paper, a series of model experiments are performed in high vacuum and with various added gases to elucidate the influence of different test environments on the tribological behavior of three diamond-like carbon (DLC) films.

Journal ArticleDOI
TL;DR: In this article, columnar-structured diamond films with column diameters less than 100 nm and thickness in the range of 1-5 μm were grown on silicon substrates by chemical vapor deposition (CVD) in a microwave plasma reactor with purified methane and hydrogen used as the reactants.
Abstract: Nanocrystalline columnar-structured diamond films with column diameters less than 100 nm and thicknesses in the range of 1–5 μm were grown on silicon substrates by chemical vapor deposition (CVD) in a microwave plasma reactor with purified methane and hydrogen used as the reactants. Uniform conformal nucleation densities in excess of 1012 cm−2 were accomplished prior to growth by seeding with explosively formed nanodiamonds, which resulted in good optical quality films. The film thickness was measured in situ by the laser reflectometry method. The grain size and optical quality of the films were characterized by scanning electron microscopy and Raman measurements. Broadband surface acoustic wave pulses were used to measure the anomalous dispersion in the layered systems. The experimental dispersion curves were fitted by theory, assuming the diamond film as an isotropic layer on an anisotropic silicon substrate, to determine mean values of the density and Young’s modulus of the diamond films. The density w...

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of length and spacing on the field-emission characteristics of carbon nanotube (CNT) films grown by plasma-enhanced hot filament chemical vapor deposition using pulsed-current electrochemically deposited catalyst particles.
Abstract: The length and the spacing of carbon nanotube (CNT) films are varied independently to investigate their effect on the field-emission characteristics of the vertically aligned CNT films grown by plasma-enhanced hot filament chemical vapor deposition using pulsed-current electrochemically deposited catalyst particles. It is shown that, in general, the macroscopic electric field Emac,1, defined as the electric field when the emission current density reaches 1 mA/cm2, can be reduced by increasing the length and the spacing of CNTs. However, for the very-high-density CNT films, the increase of length increases Emac,1 slightly, whereas for the very short CNT films, the increase of spacing does not effectively reduce Emac,1.

Patent
07 Apr 2003
TL;DR: A porous organosilica glass (OSG) as discussed by the authors is a single phase of a material represented by the formula Si v O w C x H y F z, where v+w+x+y+z=100, w is from 10 to 65 atomic %, x is from 5 to 30 atomic % and y is from 0 to 50 atomic %.
Abstract: A porous organosilica glass (OSG) film consists of a single phase of a material represented by the formula Si v O w C x H y F z , where v+w+x+y+z=100%, v is from 10 to 35 atomic %, w is from 10 to 65 atomic %, x is from 5 to 30 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %, wherein the film has pores and a dielectric constant less than 2.6. The film is provided by a chemical vapor deposition method in which a preliminary film is deposited from organosilane and/or organosiloxane precursors and pore-forming agents (porogens), which can be independent of, or bonded to, the precursors. The porogens are subsequently removed to provide the porous film. Compositions, such as kits, for forming the films include porogens and precursors. Porogenated precursors are also useful for providing the film.

Journal ArticleDOI
TL;DR: In this paper, microstructural evolution and resulting changes in electrical properties of atomic-layer deposition-grown HfO2 on SiO2/Si substrates were studied as a function of annealing temperature in a N2 ambient.
Abstract: Microstructural evolution and resulting changes in electrical properties of atomic-layerdeposition-grown HfO2 on SiO2/Si substrates were studied as a function of annealing temperature in a N2 ambient. As deposited ∼30-A-thick HfO2 on 15 and 25 A thermal SiO2 were almost entirely amorphous, although a low density of crystalline seeds were observed and crystallization occurred from these nuclei during furnace anneals at temperatures >∼500 °C. The major crystalline phase thus formed was monoclinic, and some fraction of tetragonal phase was observed during crystallization according to transmission electron microscopy electron diffraction analysis. Complete crystallization occurred around 700 °C and, at higher temperatures, significant interfacial silicon dioxide growth was observed due to the presence of a small partial pressure of oxygen in the annealing ambient. No significant increase of leakage current in the trap-assisted tunneling conduction regime was observed during the intermediate and final stage of...

Journal ArticleDOI
TL;DR: In this paper, the authors characterized the catalysts for carbon nanotube growth in chemical vapor deposition (CVD) by using electron microscopy, and showed that the nanoparticles of iron and cobalt exhibit a melting point that is similar to the melting point of graphite.
Abstract: We characterize the iron and cobalt catalysts for carbon nanotube growth in chemical vapor deposition (CVD) by using electron microscopy. Nanoparticles of iron and cobalt exhibit a melting point dr...

Journal ArticleDOI
TL;DR: In this paper, a combined experimental and theoretical study on carbon nanotube (CNT) based system for gas sensing applications is reported, in which the electrical resistivity of the CNT film shows a semiconducting-like temperature dependence and a p-type response with decreasing electrical resistance upon exposure to NO2 gas (100 ppb).
Abstract: In this work a combined experimental and theoretical study on carbon nanotube (CNT) based system for gas sensing applications is reported. Carbon nanotubes thin films have been deposited by plasma-enhanced chemical vapor deposition on Si3N4/Si substrates provided with Pt electrodes. Microstructural features as determined by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy highlight the growth of defective tubular carbon structures. The electrical resistivity of the CNT film shows a semiconductinglike temperature dependence and a p-type response with decreasing electrical resistance upon exposure to NO2 gas (100 ppb). No response has been found by exposing the film to CO gas in the temperature range between 25 and 250 °C. In order to obtain a theoretical validation of the experimental results, the equilibrium position, charge transfer, and density of states are calculated from first principles for the CNT+CO and CNT+NO2 systems. Our spin-unrestricted density functional...

Journal ArticleDOI
01 Jan 2003-Carbon
TL;DR: In this paper, carbon nanotubes were grown by the decomposition of C2H2 over a thin catalyst film in order to investigate the growth mechanism of CNTs by chemical vapour deposition (CVD).

Journal ArticleDOI
TL;DR: In this paper, a microelectronic gas sensor utilizing carbon nanotubes (CNTs) in a thin-layered Pd/CNT/n+-Si structure for hydrogen detection has been achieved.
Abstract: A novel microelectronic gas sensor utilizing carbon nanotubes (CNTs) in a thin-layered Pd/CNTs/n+-Si structure for hydrogen detection has been achieved. The sensor is fabricated on an n-type silicon wafer, which is needed as an ohmic supporting substrate. Multiwalled CNTs were grown selectively on the substrate via catalytic activation with microwave plasma enhanced chemical vapor deposition. The I–V characteristics of the sensor exhibit Schottky diode behavior at room temperature with marked sensitivity or current changes in the presence of hydrogen. Increasing detection sensitivity in hydrogen sensing was observed with increasing operating temperature. The results demonstrate that CNTs configured as a gas sensor has high sensitivity to hydrogen over a wide temperature range. Behaviors of the sensor in the presence of hydrogen and at elevated temperature were discussed. The successful utilization of CNTs in gas sensors may open a new door for the development of novel nanostructure gas-sensing devices.

Journal ArticleDOI
TL;DR: In this article, the effects of plasma processing, formation of Si-based dielectrics, and formation of a thin Al2O3 film on the chemical and electronic properties of GaN and GaN/AlGaN heterostructure surfaces were systematically investigated.
Abstract: We have systematically investigated effects of plasma processing, formation of Si-based dielectrics, and formation of a thin Al2O3 film on the chemical and electronic properties of GaN and GaN/AlGaN heterostructure surfaces. The surface treatment in H2-plasma excited by electron-cyclotron-resonance (ECR) source, produced nitrogen-vacancy-related defect levels at GaN and AlGaN surfaces, while the ECR-N2-plasma treatment improved electronic properties of the surfaces. The deposition of a SiO2 film on GaN and AlGaN surfaces was found to induce high-density interface states, due to unexpected and uncontrollable oxidation reactions on the surfaces during the deposition process. In comparison, the SiNx/GaN passivation structure prepared by ECR-plasma assisted chemical vapor deposition showed good interface properties with the minimum Dit value of 1×1011 cm−2 eV−1. However, excess leakage currents governed by Fowler–Nordheim tunneling were observed in the SiNx/Al0.3Ga0.7N structure, due to a relatively small con...

Journal ArticleDOI
TL;DR: In this article, it was shown that the presence of cobalt catalyzes the directional growth of TiO2 and NH3 enhances this growth behavior, and thinner and longer nanorod growth was observed.

Patent
31 Jul 2003
TL;DR: In this article, a method for processing a substrate comprising depositing a dielectric layer comprising silicon, oxygen, and carbon on the substrate by chemical vapor deposition was proposed, which has a carbon content of at least 1% by atomic weight.
Abstract: A method for processing a substrate comprising depositing a dielectric layer comprising silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.

Journal ArticleDOI
Jatin K. Rath1
TL;DR: In this article, a comprehensive compilation of recent developments in low temperature deposited poly Si films, also known as microcrystalline silicon, is given, where the effect of ions and the frequency of the plasma ignition are discussed in relation to high deposition rate and the desired crystallinity and structure.