scispace - formally typeset
Search or ask a question
Topic

Chemisorption

About: Chemisorption is a research topic. Over the lifetime, 16298 publications have been published within this topic receiving 554989 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The work function at first decreases, exhibits a (temperature-dependent) minimum at θ = 13, attains nearly the value of the clean surface at 12 and again exhibits a second (shallow) minimum around 0.68 as mentioned in this paper.

721 citations

Journal ArticleDOI
TL;DR: Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
Abstract: The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR) The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3–7 for Cu(II), 5–8 for Zn(II), 4–8 for Cd(II), 3–7 for Pb(II) The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g−1, respectively The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II) Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions After adsorption, the tendency to agglomerate and precipitate is observed Excellent dispersibility of GO and strong tendency of GO–Me(II) to precipitate open the path to removal of heavy metals from water solution Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents

690 citations

Journal ArticleDOI
TL;DR: A sulfur electrode exhibiting strong polysulfide chemisorption using a porous N, S dual-doped carbon is reported, and the synergistic functionalization from the N and S heteroatoms dramatically modifies the electron density distribution and leads to much stronger polys sulfuride binding.
Abstract: A sulfur electrode exhibiting strong polysulfide chemisorption using a porous N, S dual-doped carbon is reported. The synergistic functionalization from the N and S heteroatoms dramatically modifies the electron density distribution and leads to much stronger polysulfide binding. X-ray photoelectron spectroscopy studies combined with ab initio calculations reveal strong Li(+) -N and Sn (2-) -S interactions. The sulfur electrodes exhibit an ultralow capacity fading of 0.052% per cycle over 1100 cycles.

676 citations

Journal ArticleDOI
TL;DR: This study offers a promising and sustainable route for the fixation of atmospheric N2 using solar energy by synthesising defect-rich ultrathin anatase nanosheets with an abundance of oxygen vacancies and intrinsic compressive strain through a facile copper-doping strategy.
Abstract: Dinitrogen reduction to ammonia using transition metal catalysts is central to both the chemical industry and the Earth's nitrogen cycle. In the Haber-Bosch process, a metallic iron catalyst and high temperatures (400 °C) and pressures (200 atm) are necessary to activate and cleave NN bonds, motivating the search for alternative catalysts that can transform N2 to NH3 under far milder reaction conditions. Here, the successful hydrothermal synthesis of ultrathin TiO2 nanosheets with an abundance of oxygen vacancies and intrinsic compressive strain, achieved through a facile copper-doping strategy, is reported. These defect-rich ultrathin anatase nanosheets exhibit remarkable and stable performance for photocatalytic reduction of N2 to NH3 in water, exhibiting photoactivity up to 700 nm. The oxygen vacancies and strain effect allow strong chemisorption and activation of molecular N2 and water, resulting in unusually high rates of NH3 evolution under visible-light irradiation. Therefore, this study offers a promising and sustainable route for the fixation of atmospheric N2 using solar energy.

663 citations

Journal ArticleDOI
TL;DR: In this paper, an attempt is made to draw correlations between thermal desorption and structural studies of chemisorption on metal surfaces, in particular with relation to the adsorption of hydrogen and carbon monoxide on tungsten.

650 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Oxide
213.4K papers, 3.6M citations
88% related
Raman spectroscopy
122.6K papers, 2.8M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Catalysis
400.9K papers, 8.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023567
20221,044
2021538
2020424
2019458
2018350