scispace - formally typeset
Search or ask a question
Topic

Chemisorption

About: Chemisorption is a research topic. Over the lifetime, 16298 publications have been published within this topic receiving 554989 citations.


Papers
More filters
Journal ArticleDOI
M.S. Morad1
TL;DR: In this paper, the corrosion inhibition of iron in HCl, HClO4, H2SO4 and H3PO4 solutions by cefatrexyl has been studied by polarization resistance (Rp) and electrochemical impedance spectroscopy (EIS) at the corrosion potential.

190 citations

Patent
12 Oct 1999
TL;DR: In this paper, a lower electrode having a surface and a rounded protruding portion is formed on a semiconductor substrate, and a chemisorption layer is then formed on the surface and the rounding protruding part by supplying a first reactant.
Abstract: The present invention discloses a method for forming a dielectric film having improved leakage current characteristics in a capacitor. A lower electrode having a surface and a rounded protruding portion is formed on a semiconductor substrate. The surface and the protruding portion define at least one concave area. A chemisorption layer is then formed on the surface and the rounded protruding portion by supplying a first reactant. Also, a physisorption layer is formed on the chemisorption layer from the first reactant. Next, a portion of the physisorption layer is removed and a portion of the physisorption layer is left on the concave area. Subsequently, the chemisorption layer and the portion of the physisorption layer on the concave area react with a second reactant to form a dielectric film on the surface of the lower electrode. The thickness of said dielectric film is greater on the concave area than on the protruding portion, thereby reducing leakage current.

189 citations

Journal ArticleDOI
TL;DR: In this article, the role of three types of oxygen atoms present in the lattice: vanadyl oxygen atoms O(1) coordinated only to one vanadium atom, and bridging oxygen atom O(2) and O(3) coordinated to two and three vanadium atoms, respectively, is discussed.
Abstract: Copyright (c) 1997 Elsevier Science B.V. All rights reserved. Structure and properties of V 2 O 5 are described and the role of three types of oxygen atoms present in the lattice: vanadyl oxygen atoms O(1) coordinated only to one vanadium atom, and bridging oxygen atoms O(2) and O(3) coordinated to two and three vanadium atoms, respectively, is discussed. Equilibration of gas phase oxygen with vanadium oxides results in the formation of the intrinsic defect structure of V 2 O 5 consisting of oxygen vacancies. Discussion of the properties of vacancies as deduced from measurements of electrical conductivity, EPR and IR spectra and the stability of different oxygen vacant sites as obtained from quantum-chemical calculations is given. Mechanism of the reduction of V 2 O 5 through crystallographic shear, resulting in the formation of V 6 O 13 or V 4 O 9 , is illustrated. It is shown that because of a pronounced anisotropy of V 2 O 5 crystal structure sensitivity of catalytic reactions appears. Two types of crystal planes are exposed. The (0 1 0) basal plane has all chemical bonds almost fully saturated. The non-bonding d-orbitals of V ions have the LUMO character and act as Lewis acid sites, whereas the lone electron pairs of bridging oxygen atoms have the HOMO character and behave as Lewis basic sites. On the (1 0 0) and (0 0 1) planes cleavage leaves coordinatively unsaturated vanadium and oxygen ions, which develop Bronsted acid-base interactions with reacting molecules, causing the heterolytic chemisorption. Oxygen vacancies in the lattice are replenished through oxidation by gas phase oxygen, which sometimes is considered as oxygen chemisorption.

188 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation of benzotriazole (BZA) by a novel Fenton-like reaction was investigated using a catalyst prepared by incorporating Cu into mesoporous MnO2 (mesoporous Cu/MnO2, MCM).
Abstract: Degradation of benzotriazole (BZA) as an emerging contaminant by a novel Fenton-like reaction was investigated using a catalyst prepared by incorporating Cu into mesoporous MnO2 (mesoporous Cu/MnO2, MCM). Catalysts were synthesized with different Cu contents, and were characterized by N2 adsorption–desorption, X-ray photoelectron spectroscopy, ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy, and temperature-programmed reduction (TPR)-H2. The MCM functioned via surface chemisorption and redox reaction that was confirmed by intermediates identification, XPS and TPR analysis, followed by a Fenton-like oxidation derived by surface Cu+ and Mn3+, to provide high degradation efficiency for BZA in solution. Fourier transform infrared (FT-IR) spectroscopy result also verified the surface adsorption and Fenton-like reaction. MCM exhibited much higher adsorption and catalytic activity in the Fenton reaction than pure MnO2 or CuO. The effect of Cu content in MCM, catalyst dose, H2O2 dose, and solution pH were investigated. BZA degradation was high in deionized water (removal efficiency = 89%) and moderate in wastewater treatment plant effluent (removal efficiency = 56%) after 60-min reaction at an initial pH of 7.13, which could be developed by adjusting the dose of catalyst or H2O2. A possible mechanism for the reaction is proposed. This involves surface adsorption with copper and a redox reaction with Mn3+, followed by a copper–manganese cycle-derived Fenton-like reaction.

188 citations

Journal ArticleDOI
TL;DR: In this paper, a model study on the promotor action of K in the synthesis of ammonia on iron catalysts was performed by studying the influence of preadsorbed potassium on the rate of dissociative nitrogen chemisorption on a Fe(100) single crystal surface.

188 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Oxide
213.4K papers, 3.6M citations
88% related
Raman spectroscopy
122.6K papers, 2.8M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Catalysis
400.9K papers, 8.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023567
20221,044
2021538
2020424
2019458
2018350