scispace - formally typeset
Search or ask a question
Topic

Chemokine

About: Chemokine is a research topic. Over the lifetime, 26727 publications have been published within this topic receiving 1536662 citations. The topic is also known as: chemotactic cytokine & chemokines.


Papers
More filters
Journal ArticleDOI
TL;DR: A rationale for the use of cytokine and chemokine blockade, and further investigation of non-steroidal anti-inflammatory drugs, in the chemoprevention and treatment of malignant diseases is provided.

6,905 citations

Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: It is reported that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases and their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis.
Abstract: Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

5,132 citations

Journal ArticleDOI
TL;DR: This review will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-σB inhibition.
Abstract: The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.

4,110 citations

Journal ArticleDOI
TL;DR: This review introduces the burgeoning family of cytokines, with special emphasis on their role in the pathophysiology of disease and their potential as targets for therapy.
Abstract: The attraction of leukocytes to tissues is essential for inflammation and the host response to infection. The process is controlled by chemokines, which are chemotactic cytokines. This review introduces the burgeoning family of cytokines, with special emphasis on their role in the pathophysiology of disease and their potential as targets for therapy. Structure and Function of Chemokines Over 40 chemokines have been identified to date, most of them in the past few years. The relations among chemokines were not initially appreciated, which led to an idiosyncratic nomenclature consisting of many acronyms. When initially identified, these proteins had no known biologic . . .

3,653 citations

Journal ArticleDOI
TL;DR: Known discrepancies in both innate and adaptive immunity are outlined, including balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets andChemokine and chemokine receptor expression.
Abstract: Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.

3,098 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
94% related
Immune system
182.8K papers, 7.9M citations
94% related
Signal transduction
122.6K papers, 8.2M citations
92% related
Receptor
159.3K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,791
20222,492
20211,301
20201,244
20191,114
20181,072