scispace - formally typeset
Search or ask a question
Topic

Chemokine receptor

About: Chemokine receptor is a research topic. Over the lifetime, 10035 publications have been published within this topic receiving 605543 citations. The topic is also known as: Chemokine_rcpt & IPR000355.


Papers
More filters
Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: It is reported that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases and their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis.
Abstract: Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

5,132 citations

Journal ArticleDOI
20 Jun 1996-Nature
TL;DR: The β-chemokine receptor CC-CKR-5 as mentioned in this paper is a second receptor for NSI primary viruses, which allows env-mediated cell-cell membrane fusion, but it does not allow the fusion of cells from some HIV-1-exposed uninfected individuals.
Abstract: The β-chemokines MIP-1α, MIP-1β and RANTES inhibit infection of CD4+ cells by primary, non-syncytium-inducing (NSI) HIV-1 strains at the virus entry stage, and also block env-mediated cell–cell membrane fusion. CD4+ T cells from some HIV-1-exposed uninfected individuals cannot fuse with NSI HIV-1 strains and secrete high levels of β-chemokines. Expression of the β-chemokine receptor CC-CKR-5 in CD4+ , non-permissive human and non-human cells renders them susceptible to infection by NSI strains, and allows env-mediated membrane fusion. CC-CKR-5 is a second receptor for NSI primary viruses.

3,304 citations

Journal ArticleDOI
TL;DR: Known discrepancies in both innate and adaptive immunity are outlined, including balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets andChemokine and chemokine receptor expression.
Abstract: Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.

3,098 citations

Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: This is the first demonstration of the involvement of a G-protein-coupled chemokine receptor in neuronal cell migration and patterning in the central nervous system and may be important for designing strategies to block HIV entry into cells and for understanding mechanisms of pathogenesis in AIDS dementia.
Abstract: Chemokines and their receptors are important in cell migration during inflammation, in the establishment of functional lymphoid microenvironments, and in organogenesis. The chemokine receptor CXCR4 is broadly expressed in cells of both the immune and the central nervous systems and can mediate migration of resting leukocytes and haematopoietic progenitors in response to its ligand, SDF-1. CXCR4 is also a major receptor for strains of human immunodeficiency virus-1 (HIV-1) that arise during progression to immunodeficiency and AIDS dementia. Here we show that mice lacking CXCR4 exhibit haematopoietic and cardiac defects identical to those of SDF-1-deficient mice, indicating that CXCR4 may be the only receptor for SDF-1. Furthermore, fetal cerebellar development in mutant animals is markedly different from that in wild-type animals, with many proliferating granule cells invading the cerebellar anlage. This is, to our knowledge, the first demonstration of the involvement of a G-protein-coupled chemokine receptor in neuronal cell migration and patterning in the central nervous system. These results may be important for designing strategies to block HIV entry into cells and for understanding mechanisms of pathogenesis in AIDS dementia.

2,506 citations

Journal ArticleDOI
TL;DR: Some of the chemokines' biological effects in vivo and in vitro, described in the last few years are discussed, and the implications of these findings when considering chemokine receptors as therapeutic targets are discussed.
Abstract: During the last five years, the development of bioinformatics and EST databases has been primarily responsible for the identification of many new chemokines and chemokine receptors. The chemokine field has also received considerable attention since chemokine receptors were found to act as co-receptors for HIV infection (1). In addition, chemokines, along with adhesion molecules, are crucial during inflammatory responses for a timely recruitment of specific leukocyte subpopulations to sites of tissue damage. However, chemokines and their receptors are also important in dendritic cell maturation (2), B (3), and T (4) cell development, Th1 and Th2 responses, infections, angiogenesis, and tumor growth as well as metastasis (5). Furthermore, an increase in the number of chemokine/receptor transgenic and knock-out mice has helped to define the functions of chemokines in vivo. In this review we discuss some of the chemokines' biological effects in vivo and in vitro, described in the last few years, and the implications of these findings when considering chemokine receptors as therapeutic targets.

2,473 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
92% related
Immune system
182.8K papers, 7.9M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Receptor
159.3K papers, 8.2M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023194
2022344
2021375
2020378
2019359
2018351