scispace - formally typeset
Search or ask a question
Topic

Chemostat

About: Chemostat is a research topic. Over the lifetime, 2456 publications have been published within this topic receiving 79438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A predictive algorithm is formulated in order to apply the flux balance model to describe unsteady-state growth and by-product secretion in aerobic batch, fed-batch, and anaerobic batch cultures.
Abstract: Flux balance models of metabolism use stoichiometry of metabolic pathways, metabolic demands of growth, and optimality principles to predict metabolic flux distribution and cellular growth under specified environmental conditions. These models have provided a mechanistic interpretation of systemic metabolic physiology, and they are also useful as a quantitative tool for metabolic pathway design. Quantitative predictions of cell growth and metabolic by-product secretion that are experimentally testable can be obtained from these models. In the present report, we used independent measurements to determine the model parameters for the wild-type Escherichia coli strain W3110. We experimentally determined the maximum oxygen utilization rate (15 mmol of O2 per g [dry weight] per h), the maximum aerobic glucose utilization rate (10.5 mmol of Glc per g [dry weight] per h), the maximum anaerobic glucose utilization rate (18.5 mmol of Glc per g [dry weight] per h), the non-growth-associated maintenance requirements (7.6 mmol of ATP per g [dry weight] per h), and the growth-associated maintenance requirements (13 mmol of ATP per g of biomass). The flux balance model specified by these parameters was found to quantitatively predict glucose and oxygen uptake rates as well as acetate secretion rates observed in chemostat experiments. We have formulated a predictive algorithm in order to apply the flux balance model to describe unsteady-state growth and by-product secretion in aerobic batch, fed-batch, and anaerobic batch cultures. In aerobic experiments we observed acetate secretion, accumulation in the culture medium, and reutilization from the culture medium. In fed-batch cultures acetate is cometabolized with glucose during the later part of the culture period.(ABSTRACT TRUNCATED AT 250 WORDS)

1,128 citations

Journal ArticleDOI
15 Dec 1950-Science

740 citations

Journal ArticleDOI
TL;DR: In this article, the relation between growth rate, the rate of nutrient uptake and internal and external nutrient concentrations of two nutrients simultaneously was studied in a chemostat population, where the limiting nutrient was the one that showed the smallest cell quota: subsistence quota ratio.
Abstract: Chemostats were used to study the relation between growth rate, the rate of nutrient uptake and internal and external nutrient concentrations of two nutrients simultaneously. (Monochrysis lutheri: phosphorus and vitamin B12.)Growth rate and internal concentrations of both limiting and excess nutrients are related by simple rectangular hyperbolas.Control was shown to follow a threshold rather than multiplicative pattern; that is, non-limiting nutrients exert no control at all over the pattern of growth. The limiting nutrient was the one that showed the smallest cell quota: subsistence quota ratio.Monochrysis populations exhibited two modes of growth. ‘Slow adapted cells’ differed from ‘fast adapted cells’ in the values of the constants for the above relation.Uptake of both limiting and non-limiting nutrients was found to be controlled by internal as well as external substrate concentrations. There was thus a limit to luxury consumption of one nutrient when growth was limited by another.The mathematical model formulated for growth in a chemostat (equations (23)–(29)) allowed prediction of external and internal substrate concentrations and rates of uptake of two nutrients and of biomass, given only the input concentrations of the two nutrients and the dilution rate. This model should apply equally well to growth in batch cultures; its possible application to natural populations was discussed.

721 citations

Journal ArticleDOI
TL;DR: The data suggest that a dilemma exists, namely, that either “intrinsic” KS or μmax can be measured but both cannot be determined at the same time, which should result in a competitive advantage of a cell capable of mixed-substrate growth because it can grow much faster at low substrate concentrations than one would expect from single- substrate kinetics.
Abstract: Growth kinetics, i.e., the relationship between specific growth rate and the concentration of a substrate, is one of the basic tools in microbiology. However, despite more than half a century of research, many fundamental questions about the validity and application of growth kinetics as observed in the laboratory to environmental growth conditions are still unanswered. For pure cultures growing with single substrates, enormous inconsistencies exist in the growth kinetic data reported. The low quality of experimental data has so far hampered the comparison and validation of the different growth models proposed, and only recently have data collected from nutrient-controlled chemostat cultures allowed us to compare different kinetic models on a statistical basis. The problems are mainly due to (i) the analytical difficulty in measuring substrates at growth-controlling concentrations and (ii) the fact that during a kinetic experiment, particularly in batch systems, microorganisms alter their kinetic properties because of adaptation to the changing environment. For example, for Escherichia coli growing with glucose, a physiological long-term adaptation results in a change in KS for glucose from some 5 mg liter−1 to ca. 30 μg liter−1. The data suggest that a dilemma exists, namely, that either “intrinsic” KS (under substrate-controlled conditions in chemostat culture) or μmax (under substrate-excess conditions in batch culture) can be measured but both cannot be determined at the same time. The above-described conventional growth kinetics derived from single-substrate-controlled laboratory experiments have invariably been used for describing both growth and substrate utilization in ecosystems. However, in nature, microbial cells are exposed to a wide spectrum of potential substrates, many of which they utilize simultaneously (in particular carbon sources). The kinetic data available to date for growth of pure cultures in carbon-controlled continuous culture with defined mixtures of two or more carbon sources (including pollutants) clearly demonstrate that simultaneous utilization results in lowered residual steady-state concentrations of all substrates. This should result in a competitive advantage of a cell capable of mixed-substrate growth because it can grow much faster at low substrate concentrations than one would expect from single-substrate kinetics. Additionally, the relevance of the kinetic principles obtained from defined culture systems with single, mixed, or multicomponent substrates to the kinetics of pollutant degradation as it occurs in the presence of alternative carbon sources in complex environmental systems is discussed. The presented overview indicates that many of the environmentally relevant apects in growth kinetics are still waiting to be discovered, established, and exploited.

715 citations


Network Information
Related Topics (5)
Operon
14.6K papers, 768.6K citations
79% related
Bacteria
23.6K papers, 715.9K citations
76% related
Structural gene
8.7K papers, 480.4K citations
76% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
76% related
Plasmid
44.3K papers, 1.9M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202348
2022121
202131
202042
201952
201840