scispace - formally typeset
Search or ask a question
Topic

Chitin

About: Chitin is a research topic. Over the lifetime, 6590 publications have been published within this topic receiving 253993 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A functional characterization of chitin and chitosan regarding some biological properties and some specific applications (drug delivery, tissue engineering, functional food, food preservative, biocatalyst immobilization, wastewater treatment, molecular imprinting and metal nanocomposites) is presented.
Abstract: Chitin and its deacetylated derivative chitosan are natural polymers composed of randomly distributed � -(1-4)- linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Chitin is insoluble in aqueous media while chitosan is soluble in acidic conditions due to the free protonable amino groups present in the D-glucosamine units. Due to their natural origin, both chitin and chitosan can not be defined as a unique chemical structure but as a fam- ily of polymers which present a high variability in their chemical and physical properties. This variability is related not only to the origin of the samples but also to their method of preparation. Chitin and chitosan are used in fields as different as food, biomedicine and agriculture, among others. The success of chitin and chitosan in each of these specific applica- tions is directly related to deep research into their physicochemical properties. In recent years, several reviews covering different aspects of the applications of chitin and chitosan have been published. However, these reviews have not taken into account the key role of the physicochemical properties of chitin and chitosan in their possible applications. The aim of this review is to highlight the relationship between the physicochemical properties of the polymers and their behaviour. A functional characterization of chitin and chitosan regarding some biological properties and some specific applications (drug delivery, tissue engineering, functional food, food preservative, biocatalyst immobilization, wastewater treatment, molecular imprinting and metal nanocomposites) is presented. The molecular mechanism of the biological properties such as biocompatibility, mucoadhesion, permeation enhancing effect, anticholesterolemic, and antimicrobial has been up- dated.

1,015 citations

Journal ArticleDOI
TL;DR: The net cationicity as well as the presence of multiple reactive functional groups in the molecule make chitosan a sought-after biomolecule and offers scope for manipulation for preparing a broad spectrum of derivatives for specific end use applications in diversified areas.
Abstract: Use of natural biopolymers for diversified applications in life sciences has several advantages, such as availability from replenishable agricultural or marine food resources, biocompatibility, biodegradability, therefore leading to ecological safety and the possibility of preparing a variety of chemically or enzymatically modified derivatives for specific end uses. Polysaccharides, as a class of natural macromolecules, have the tendency to be extremely bioactive, and are generally derived from agricultural feedstock or crustacean shell wastes. Cellulose, starch, pectin, etc. are the biopolymers derived from the former while chitin and chitosan are obtained from the latter. In terms of availability, chitin is next to cellulose, available to the extent of over 10 gigatons annually. The application potential of chitosan, a deacetylated derivative of chitin, is multidimensional, such as in food and nutrition, biotechnology, material science, drugs and pharmaceuticals, agriculture and environmental protection, and recently in gene therapy too. The net cationicity as well as the presence of multiple reactive functional groups in the molecule make chitosan a sought-after biomolecule. The latter offers scope for manipulation for preparing a broad spectrum of derivatives for specific end use applications in diversified areas. The biomedical and therapeutic significance of chitin/chitosan derivatives is a subject of significant concern to many all over the world. An attempt is made in this overview to consolidate some of the recent findings on the biorelated application potential of chitosan and its derivatives.

1,011 citations

Journal ArticleDOI
TL;DR: The introduction of azido functions in chitosan has provided photo-sensitive hydrogels for surgical use as coatings, scaffolds, drug carriers and implants capable to deliver cells and growth factors, which remain unmatched by other polysaccharides.

1,003 citations

Journal ArticleDOI
TL;DR: This article reviews the recent reports on the preparation, properties and biomedical applications of chitin and chitosan based nanofibers in detail.

869 citations

Journal ArticleDOI
TL;DR: This most versatile amino polysaccharide, chitin, is surely an undisputed biomolecule of great potential and an unlimited R&D efforts are needed to find new applications, which are necessary to realize its full potential.
Abstract: Of the truly abundant polysaccharides in Nature, only chitin has yet to find utilization in large quantity. Chitin is the second most abundant natural biopolymer derived from exoskeletons of crustaceans and also from cell walls of fungi and insects. Chitin is a linear beta 1,4-linked polymer of N-acetyl-D-glucosamine (GlcNAc), whereas chitosan, a copolymer of GlcNAc (approximately 20%) and glucosamine (GlcN, 80%) residues, is a product derived from de-N-acetylation of chitin in the presence of hot alkali. Chitosan is, in fact, a collective name representing a family of de-N-acetylated chitins deacetylated to different degrees. Both chitin/chitosan and their modified derivatives find extensive applications in medicine, agriculture, food, and non-food industries as well. They have emerged as a new class of physiological materials of highly sophisticated functions. Their application versatility is a great challenge to the scientific community and to industry. All these are the result of their versatile biological activity, excellent biocompatibility, and complete biodegradability in combination with low toxicity. Commercial availability of high-purity forms of chitin/chitosan and the continuous appearance of new types of chitin/chitosan derivatives with more and more useful and specific properties have led to an unlimited R&D efforts on this most versatile amino polysaccharide, chitin to find new applications, which are necessary to realize its full potential. Incidentally, this too has become an environmental priority. No doubt, chitin is surely an undisputed biomolecule of great potential.

851 citations


Network Information
Related Topics (5)
Cellulose
59K papers, 1.4M citations
87% related
Enzyme
32.8K papers, 1.1M citations
81% related
Amino acid
124.9K papers, 4M citations
80% related
Fermentation
68.8K papers, 1.2M citations
80% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023434
2022868
2021271
2020354
2019333
2018271