scispace - formally typeset
Search or ask a question

Showing papers on "Chitinase published in 2008"


Journal ArticleDOI
TL;DR: This work demonstrated that chitin has complex and size-dependent effects on innate and adaptive immune responses including the ability to recruit and activate innate immune cells and induce cytokine and chemokine production via a variety of cell surface receptors.

316 citations


Journal ArticleDOI
TL;DR: Analysis of in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii and culture filtrates indicated that the antifungal potential of the exponential culture Filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antIfungal activity of the stationary culture filTrate involved the action of unknown thermostable antif fungus compound(s).
Abstract: Indigenous actinomycetes isolated from rhizosphere soils were assessed for in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii. A potent antagonist against both plant pathogenic fungi, designated SRA14, was selected and identified as Streptomyces hygroscopicus. The strain SRA14 highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. Culture filtrates collected from the exponential and stationary phases inhibited the growth of both the fungi tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrates. The percentage of growth inhibition by the stationary culture filtrate was significantly higher than that of exponential culture filtrate. Morphological changes such as hyphal swelling and abnormal shapes were observed in fungi grown on potato dextrose agar that contained the culture filtrates. However, the antifungal activity of exponential culture filtrates against both the experimental fungi was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentage of fungal growth inhibition by the stationary culture filtrate that was treated as above. These data indicated that the antifungal potential of the exponential culture filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antifungal activity of the stationary culture filtrate involved the action of unknown thermostable antifungal compound(s).

247 citations


Journal ArticleDOI
TL;DR: A core chitin degradation pathway is proposed based on comparison of 19 Vibrio and Photobacterium genomes with a detailed metabolic map assembled for V. cholerae from published biochemical, genomic, and transcriptomic results.
Abstract: Vibrionaceae are regarded as important marine chitin degraders, and attachment to chitin regulates important biological functions; yet, the degree of chitin pathway conservation in Vibrionaceae is unknown. Here, a core chitin degradation pathway is proposed based on comparison of 19 Vibrio and Photobacterium genomes with a detailed metabolic map assembled for V. cholerae from published biochemical, genomic, and transcriptomic results. Further, to assess whether chitin degradation is a conserved property of Vibrionaceae, a set of 54 strains from 32 taxa were tested for the ability to grow on various forms of chitin. All strains grew on N-acetylglucosamine (GlcNAc), the monomer of chitin. The majority of isolates grew on α (crab shell) and β (squid pen) chitin and contained chitinase A (chiA) genes. chiA sequencing and phylogenetic analysis suggest that this gene is a good indicator of chitin metabolism but appears subject to horizontal gene transfer and duplication. Overall, chitin metabolism appears to be a core function of Vibrionaceae, but individual pathway components exhibit dynamic evolutionary histories.

200 citations


Journal ArticleDOI
TL;DR: Results show that SW enhances disease resistance in carrot, likely through induction of defence genes or proteins, and was more effective than salicylic acid (SA) in reducing infection.

181 citations


Journal ArticleDOI
TL;DR: Results suggested that direct parasitism of eggs through the increase in extracellular chitinase activity, which would be indicator of eggs infection capability, and inducing plant defense mechanisms leading to systemic resistance are two main suppression mechanisms used by T. harzianum BI against nematode.
Abstract: The filamentous fungi Trichoderma spp. is currently developed as biocontrol agents against many plant pathogens. Recent studies have shown that these fungi are able to infect nematode eggs and juveniles. In this research, biological control of root-knot nematode (Meloidogyne javanica) by Trichoderma harzianum BI was investigated in greenhouse and laboratory experiments. Results showed that different concentrations (102–108 spores/ml) of T. harzianum BI decreased nematode infection and other parameters significantly, compared to control. T. harzianum BI was able to penetrate nematode egg mass matrix and significantly decreased nematode egg hatching level. Specific activities of resistance-related enzymes, namely peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) increased significantly in T. harzianum BI inoculated plants. Maximum activities of POX, PPO and PAL were observed at the 5, 5 and 6 days after inoculation, respectively. Chitinase activity was also increased in culture filtrates of T. harzianum BI grown on wheat bran moistened with salt solution supplemented with colloidal chitin or nematode eggs. Maximum activity of chitinase was recorded at the 4 days after inoculation, in media supplemented with colloidal chitin (1.15 U/min per ml) and nematode eggs (0.85 U/min per ml). Results suggested that direct parasitism of eggs through the increase in extracellular chitinase activity, which would be indicator of eggs infection capability, and inducing plant defense mechanisms leading to systemic resistance are two main suppression mechanisms used by T. harzianum BI against nematode.

181 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi.
Abstract: Aims: Biological sources for the control of plant pathogenic fungi remain an important objective for sustainable agricultural practices. Actinomycetes are used extensively in the pharmaceutical industry and agriculture owing to their great diversity in enzyme production. In the present study, therefore, we evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi. Methods and Results: Endophytic Streptomyces were grown on minimum medium supplemented with chitin, and chitinase production was quantified. The strains were screened for any activity towards phytopathogenic fungi and oomycetes by a dual-culture in vitro assay. The correlation between chitinase production and pathogen inhibition was calculated and further confirmed on Colletotrichum sublineolum cell walls by scanning electron microscopy. Conclusions: This paper reports a genetic correlation between chitinase production and the biocontrol potential of endophytic actinomycetes in an antagonistic interaction with different phytopathogens, suggesting that this control could occur inside the host plant. Significance and Impact of the Study: A genetic correlation between chitinase production and pathogen inhibition was demonstrated. Our results provide an enhanced understanding of endophytic Streptomyces and its potential as a biocontrol agent. The implications and applications of these data for biocontrol are discussed.

119 citations


Journal ArticleDOI
TL;DR: The X‐ray structure of chitinase from the fungal pathogen Coccidioides immitis has been solved to 2.2 Å resolution, and conserved structural features of the two enzymes are used to predict the inhibitors binding to thefungal enzyme.
Abstract: The X-ray structure of chitinase from the fungal pathogen Coccidioides immitis has been solved to 2.2 A resolution. Like other members of the class 18 hydrolase family, this 427 residue protein is an eight-stranded beta/alpha-barrel. Although lacking an N-terminal chitin anchoring domain, the enzyme closely resembles the chitinase from Serratia marcescens. Among the conserved features are three cis peptide bonds, all involving conserved active site residues. The active site is formed from conserved residues such as tryptophans 47, 131, 315, 378, tyrosines 239 and 293, and arginines 52 and 295. Glu171 is the catalytic acid in the hydrolytic mechanism; it was mutated to a Gln, and activity was abolished. Allosamidin is a substrate analog that strongly inhibits the class 18 enzymes. Its binding to the chitinase hevamine has been observed, and we used conserved structural features of the two enzymes to predict the inhibitors binding to the fungal enzyme.

109 citations


Journal ArticleDOI
TL;DR: The high levels of chitinase activity in habitual smokers result from upregulation of CHIT1 gene expression, especially in macrophages, which is not increased in subjects with asthma and in fact tends to be decreased.
Abstract: Background Chitinolytic enzymes play important roles in the pathophysiology of allergic airway responses in mouse models of asthma. Acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1) have chitinolytic activity, but relatively little is known about their expression in human asthma. Objective We sought to determine the expression and activity of AMCase and CHIT1 in healthy subjects, subjects with asthma, and habitual smokers, taking account of the null 24-bp duplication in the CHIT1 gene. Methods We measured chitinase activity in bronchoalveolar lavage (BAL) fluid at multiple pHs by using a synthetic chitin substrate. We also determined AMCase and CHIT1 gene expression in epithelial brushings and BAL fluid macrophages by means of real time RT-PCR. Paired DNA samples were genotyped for the CHIT1 duplication. Results In all subgroups the pH profile of chitinase activity in BAL fluid matched that of CHIT1, but not AMCase, and chitinase activity was absent in subjects genetically deficient in active CHIT1. Although AMCase protein was detectable in lavage fluid, AMCase transcripts in macrophages were consistent with an isoform lacking enzymatic activity. Median chitinase activity in BAL fluid tended to be lower than normal in asthmatic subjects but was increased 7-fold in habitual smokers, where CHIT1 gene expression in macrophages was increased. Conclusions Chitinase activity in the lung is the result of CHIT1 activity. Although AMCase protein is detectable in the lung, our data indicate that it is inactive. Chitinase activity is not increased in subjects with asthma and in fact tends to be decreased. The high levels of chitinase activity in habitual smokers result from upregulation of CHIT1 gene expression, especially in macrophages.

103 citations


Journal ArticleDOI
TL;DR: Agrobacterium-mediated transformation of rice was done using the binary vector pNSP3, harbouring the rice chitinase (chi11) gene under maize ubiquitin promoter and the tobacco β-1,3-glucanase gene under CaMV 35S promoter in the same T-DNA, reflecting the persistence of sheath blight resistance for a longer period.

102 citations


Journal ArticleDOI
TL;DR: Results demonstrate that the Crh proteins act by transferring chitin chains to β(1–6)glucan, with a newly observed high activity in the bud scar, and the importance of transglycosylation for cell wall assembly is firmly established.

100 citations


Journal ArticleDOI
TL;DR: Monitoring the accumulation of chitinases in a set of heavy-metal stressed plants confirmed that chit inases are components of plant defence against higher concentrations of heavy metals and suggests their biological role is more complex than expected.
Abstract: Plant chitinases belong to so-called pathogenesis related proteins and have mostly been detected in plants exposed to phytopathogenic viruses, bacteria or fungi. A few studies revealed that they might also be involved in plant defence against heavy metals. This work was undertaken to monitor the accumulation of chitinases in a set of heavy-metal stressed plants and bring evidence on their involvement during this kind of stress. Roots of different plant species including Vicia faba cvs. Astar and Piestanský, Pisum sativum, Hordeum vulgare, Zea mays and Glycine max were exposed to different concentrations of lead (300 and 500 mg l(-1) Pb(2+)), cadmium (100 and 300 mg l(-1) Cd(2+)) and arsenic (50 and 100 mg l(-1) As(3+)). In each case, the toxicity effects were reflected in root growth retardation to 80-10% of control values. The most tolerant were beans, most sensitive was barley. Extracts from the most stressed roots were further assayed for chitinase activity upon separation on polyacrylamide gels. Our data showed that in each combination of genotype and metal ion there were 2-5 different chitinase isoforms significantly responsive to toxic environment when compared with water-treated controls. This confirms that chitinases are components of plant defence against higher concentrations of heavy metals. In addition, accumulation of some isoforms in response to one but not to other metal ions suggests that these enzymes might also be involved in a more (metal) specific mechanism in affected plants and their biological role is more complex than expected.

Journal ArticleDOI
TL;DR: The results suggest that various signal peptides of Bacillus spp.

Journal ArticleDOI
TL;DR: There were no quantitative differences among species in the production of chitinase, however, the germination inhibition of basidiospores of M. perniciosa was higher when they were cultivated using glucose as a carbon source, followed by colloidal chit in and cell walls, suggesting involvement of siderophores in the antagonism by these species of actinomycetes.

Journal ArticleDOI
TL;DR: CHI3L1 is involved in the enhancement of CBP-expressing bacterial adhesion to CECs through the conserved amino-acid residues, and CBP21 and its homologs may be required for this enhancement.

Journal ArticleDOI
TL;DR: It seems that CR-treatment by itself promotes plant growth and reduces the peroxidase expression, while enhances some chitinase isoforms probably involved in cell wall disruption.

Journal ArticleDOI
TL;DR: The results indicate that antagonistic fungal-fungal interactions are an important process for soil borne ascomycetes, but not for fungal species that are pathogenic in humans.
Abstract: Gene duplication and loss play an important role in the evolution of novel functions and for shaping an organism's gene content. Recently, it was suggested that stress-related genes frequently are exposed to duplications and losses, while growth-related genes show selection against change in copy number. The fungal chitinase gene family constitutes an inter- esting case study of gene duplication and loss, as their biological roles include growth and development as well as more stress-responsive functions. We used genome sequence data to analyze the size of the chitinase gene family in different fungal taxa, which range from 1 in Batrachochytrium dendrobatidis and Schizosaccharomyces pombe to 20 in Hypocrea jecorina and Emericella nidulans, and to infer their phylogenetic relationships. Novel chitinase subgroups are identifi ed and their phylogenetic relationships with previously known chitinases are discussed. We also employ a stochastic birth and death model to show that the fungal chitinase gene family indeed evolves non-randomly, and we identify six fungal lineages where larger-than-expected expansions (Pezizomycotina, H. jecorina, Gibberella zeae, Uncinocarpus reesii, E. nidulans and Rhizopus oryzae), and two contractions (Coccidioides immitis and S. pombe) potentially indicate the action of adaptive natural selection. The results indicate that antagonistic fungal-fungal interactions are an important process for soil borne ascomycetes, but not for fungal species that are pathogenic in humans. Unicellular growth is correlated with a reduction of chitinase gene copy numbers which emphasizes the requirement of the combined action of several chitinases for fi lamentous growth.

Journal ArticleDOI
TL;DR: A strain designated as MML2270, which produced highest chitinolytic activity in primary and secondary screening in colloidal chitin agar was selected and later identified as Bacillus laterosporous.
Abstract: A total of 39 chitinolytic bacteria were isolated from 77 rhizosphere soil samples collected from different crop fields in Tamil Nadu state, India. Among them, a strain designated as MML2270, which produced highest chitinolytic activity in primary and secondary screening in colloidal chitin agar was selected and later identified as Bacillus laterosporous. The production of chitinase by B. laterosporous was optimized using different growth media, substrate concentrations, pH, temperature and incubation period. The maximum chitinase production was observed in yeast nitrogen based medium (YNB) amended with 0.3% colloidal chitin at pH 8.0 and 35°C after four days of inoculation. Under this optimized growth condition, B. laterosporous MML2270 produced a total chitinase activity of 59.05 units/ml as against only 19.7 units/ml in the initial YNB medium stage, which is a three-fold increase.

Journal ArticleDOI
TL;DR: A chitinase and a chitosanase were purified from the culture supernatant of Pseudomonas sp.

Journal ArticleDOI
TL;DR: ChiA functions as a GPI-anchored chitinase at the sites where cell wall remodeling and/or cell wall maturation actively take place, suggesting that Aspergillus nidulans plays important physiological roles in filamentous fungi.

Journal ArticleDOI
TL;DR: Evidence is provided that attachment, competition for nutrients, and secretion of hydrolytic enzymes, at least partially, explain how P. guilliermondii strain R13 suppresses C. capsici in the chilli fruit wounds.

Journal ArticleDOI
TL;DR: A comparison of the amino acid sequences and homology model structures of group V proteins with enzymatically active members of the chitinase family indicated that the presence of additional loops of amino acids within the (betaalpha)(8)-barrel structure of these proteins interferes with productive substrate binding and/or catalysis.

Journal ArticleDOI
TL;DR: An in vivo interaction between them was mimicked and not only the secreted cell wall-degrading enzymes but also all of the proteome were investigated, and a possible mechanism was proposed to elucidate how the cell walls of R. solani are systematically enveloped and disintegrated.
Abstract: To elucidate the entire range of proteins that are secreted by Trichoderma harzianum ETS 323 in its antagonism with Rhizoctonia solani, an in vivo interaction between them was mimicked and not only the secreted cell wall-degrading enzymes (CWDEs) but also all of the proteome were investigated. Seven CWDEs, chitinase, cellulase, xylanase, � -1,3-glucanase, � -1,6-glucanase, mannanase, and protease,were revealed by activity assay, in-gel activity stain, 2-DE, and LC-MS/MS analysis. Extracellular protein extracts from media that contained R. solani exhibited much higher CWDE activities than media that did not contain R. solani. Cellulase and mannanase activity, however, were insignificant. Activity stain also revealed that � -1,3-glucanase, � -1,6-glucanase, and xylanase activity occurred exclusively in media that contained R. solani. Furthermore, 35 of the 43 excised spots on the 2-DE gel were successfully analyzed by LC-MS/MS, and eight proteins were identified. They were two glycoside hydrolases, two proteases, two � -glucosidases, one endochitinase and, interestingly, one amino acid oxidase. Additionally, a possible mechanism was proposed to elucidate how the cell walls of R. solani are systematically enveloped and disintegrated.

Journal ArticleDOI
TL;DR: It is suggested that the LysM domains contribute significantly to the antifungal activity of PrChi-A through their binding activity to chitin in the cell wall of fungi.
Abstract: Chitinase-A (PrChi-A), of molecular mass 42 kDa, was purified from the leaves of a fern (P. ryukyuensis) using several column chromatographies. The N-terminal amino acid sequence of PrChi-A was similar to the lysin motif (LysM). A cDNA encoding PrChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1459 nucleotides and encoded an open-reading frame of 423-amino-acid residues. The deduced amino acid sequence indicated that PrChi-A is composed of two N-terminal LysM domains and a C-terminal catalytic domain, belonging to the group of plant class IIIb chitinases, linked by proline, serine, and threonine-rich regions. Wild-type PrChi-A had chitin-binding and antifungal activities, but a mutant without LysM domains had lost both activities. These results suggest that the LysM domains contribute significantly to the antifungal activity of PrChi-A through their binding activity to chitin in the cell wall of fungi. This is the first report of the presence in plants of a family-18 chitinase containing LysM domains.

Journal ArticleDOI
TL;DR: Induction of defence enzymes by P. fluorescens with chitin amendment reduced the BBTD incidence and increased bunch yield in banana.
Abstract: Pseudomonas fluorescens strains CHA0 and Pf1 were investigated for their biocontrol efficacy against Banana bunchy top virus (BBTV) in banana (Musa spp.) alone and in combination with chitin under glasshouse and field conditions. Bioformulation of P. fluorescens strain CHA0 with chitin was effective in reducing the banana bunchy top disease (BBTD) incidence in banana under glasshouse and field conditions. In addition to disease control, the bioformulation increased the economic yield significantly compared to the untreated control. Increased accumulation of oxidative enzymes, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), pathogenesis-related (PR) proteins, chitinase, β-1,3-glucanase and phenolics were observed in CHA0 bioformulation amended with chitin-treated plants challenged with BBTV under glasshouse conditions. Indirect ELISA indicated the reduction in viral antigen concentration in P. fluorescens strain CHA0 with chitin-treated banana plants corresponding to reduced disease ratings. The present study revealed that induction of defence enzymes by P. fluorescens with chitin amendment reduced the BBTD incidence and increased bunch yield in banana.

Journal ArticleDOI
TL;DR: In an attempt to map the active fragments of this large natural product, the cyclopentapeptide was progressively dissected down to four linear peptides and dimethylguanylurea, synthesized using a combination of solution and solid phase peptide synthesis.

Journal ArticleDOI
TL;DR: The results indicate that CHIT36 expressed in planta has the potential to reduce development of fungal diseases.
Abstract: Microbial endochitinase CHIT36 is one of the lytic enzymes secreted by Trichoderma harzianum that exhibits antifungal activity in vitro. To evaluate its activity when expressed in planta, a plasmid containing chit36 gene under the control of CaMV 35S promoter and the nptII selection gene were introduced into polyethylene glycol (PEG)-treated carrot (Daucus carota L.) protoplasts. The transgenic plants expressing CHIT36 were used in resistance assays to evaluate their susceptibility to fungal pathogens. Laboratory-based assays on detached leaves and petioles showed that the transgenic carrots had less severe disease symptoms. The resistance response depended on the transgenic clone, but all clones had significantly enhanced tolerance to Alternaria radicina and Botrytis cinerea, on average by 50%. Slower disease progress caused by Alternaria dauci was observed for two transgenic clones while the remaining clone was more susceptible than the control. The most resistant transgenic clones were also more tolerant to the pathogens than ‘Bolero’ F1, which is a conventionally bred cultivar tolerant to A. dauci. This is the first report of the use of microbial chitinase to enhance carrot resistance. The results indicate that CHIT36 expressed in planta has the potential to reduce development of fungal diseases.

Journal ArticleDOI
TL;DR: In order to improve the insecticidal activity, the chitinase gene from tobacco (Nicotiana tabacum) endochit inase and the cry1Ac gene from Bacillus thuringiensis were cloned into the vector pHT315 and designated as pHUAccB5 plasmid.
Abstract: In order to improve the insecticidal activity, the chitinase gene from tobacco (Nicotiana tabacum) endochitinase and the cry1Ac gene from Bacillus thuringiensis were cloned into the vector pHT315 and designated as pHUAccB5 plasmid The constructed transcriptional fusion was attempted under the control of the native cry1Ac promoter Plasmid pHUAccB5 was introduced into B thuringiensis acrystalliferous by electroporation Analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot, the transformant XBU-HUAccB5 produced 130-kDa Cry1Ac protein and 30-kDa chitinase protein During the chitinase active analysis, the transformant, XBU-HUAccB5 chitinase active, reached 75 U/mL at 72 h, and was 5 times higher than the HTX-42 and 6 times higher than the parent strains When the insecticidal activity of the transformant was evaluated against Helicoverpa armigera Hubner, the XBU-HUAccB5 toxicity was 1130 times higher than the transformant HTX-42 expressed single cry1Ac at 48 h and was 1876 times higher at 72 h

Journal ArticleDOI
TL;DR: The purification method used for BJL200-ChiC1 in this study is generally applicable to family 18 chitinases and their mutants, including inactive mutants, some of which tend to bind almost irreversibly to chit in columns.
Abstract: In this study we cloned, expressed, purified, and charaterized chitinase C1 from Serratia marcescens strain BJL200. As expected, the BJL200-ChiC1 amino acid sequence of this strain was highly similar to sequences of ChiC1 identified in two other strains of S. marcescens. BJL200-ChiC1 was overproduced in E. coli by the T7 expression system, and purified by a one-step hydrophobic interaction chromatography (HIC) with phenyl-sepharose. BJL200-ChiA and BJL200-ChiB had an approximately 30-fold higher k(cat) and 15 fold-lower K(m) than BJL200-ChiC1 for the oligomeric substrate 4-methylumbelliferyl-beta-D-N-N'-N''-triacetylchitotrioside, while BJL200-ChiC1 was 10-15 times faster than BJL200-ChiB and BJL200-ChiA in degrading the polymeric substrate CM-chitin-RBV. BJL200-ChiC1 degradation of beta-chitin resulted in a range of different chito-oligosaccharides (GlcNAc)(2) (main product), GlcNAc, (GlcNAc)(3), (GlcNAc)(4), and (GlcNAc)(5), indicating endo activity. The purification method used for BJL200-ChiC1 in this study is generally applicable to family 18 chitinases and their mutants, including inactive mutants, some of which tend to bind almost irreversibly to chitin columns. The high specificity of the interaction with the (non-chitinous) column material is mediated by aromatic residues that occur in the substrate-binding clefts and surfaces of the enzymes.

Journal ArticleDOI
TL;DR: The biocontrol potential of Bacillus subtilis isolated from cow dung microflora was investigated in vitro and in vivo against two postharvest yam pathogenic fungi, Fusarium oxysporum and Botryodiplodia theobromae.
Abstract: The biocontrol potential of Bacillus subtilis isolated from cow dung microflora was investigated in vitro and in vivo against two postharvest yam pathogenic fungi, Fusarium oxysporum and Botryodiplodia theobromae. B. subtilis strains inhibited the growth of F. oxysporum and B. theobromae in vitro in liquid medium in the range of 49.3-56.6% and in solid medium in the range of 31.0-36.0%, in comparison to the corresponding growth of fungi without bacterial inoculation. The interaction between B. subtilis CM1 and F. oxysporum was also studied by scanning electron microscopy. Chitinase production was demonstrated in vitro when B. subtilis was grown in the presence of colloidal chitin as the sole carbon source in a liquid medium. In vivo study showed that B. subtilis strains inhibited the growth of fungi (F. oxysporum and B. thobromae) up to 83% in wound cavities of yam tubers.

Journal ArticleDOI
TL;DR: The results provide the first structure of a hyperthermostable ChBD and yield new insight into the mechanism of protein-carbohydrate recognition in chitinase, important in the development of technology for the exploitation of biomass.