scispace - formally typeset
Search or ask a question
Topic

Chitinase

About: Chitinase is a research topic. Over the lifetime, 4690 publications have been published within this topic receiving 161786 citations. The topic is also known as: 1,4-beta-poly-N-acetylglucosaminidase & poly-beta-glucosaminidase.


Papers
More filters
Journal ArticleDOI
TL;DR: The Tex6 chitinase purified in this study is capable of inhibiting the growth of A. flavus by 50% at a concentration of 20 mug/ml and makes a major contribution to the antifungal activity in this maize genotype.
Abstract: The maize inbred Tex6 has resistance to colonization and aflatoxin accumulation by Aspergillus flavus. A protein inhibitory to growth of A. flavus has been identified from aqueous extracts of mature Tex6 seeds. This study reports the purification of a chitinase associated with this inhibitory activity to electrophoretic homogeneity and the further characterization of its properties. The inhibitory protein, which has an M(r) of 29,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is an endochitinase that is also capable of exochitinase activity. The enzyme has an optimal pH of 5.5 and a temperature optimum of 45 degrees C. Chitinase activity in maize kernels peaked approximately 36 days after pollination. The Tex6 chitinase purified in this study is capable of inhibiting the growth of A. flavus by 50% at a concentration of 20 mug/ml. Our data indicate that chitinase activity in Tex6 kernels makes a major contribution to the antifungal activity in this maize genotype. Partial peptide sequence of the chitinase showed it to differ from previously reported chitinases.

76 citations

Journal ArticleDOI
TL;DR: Identified secreted proteins and their expression correlation at transcript level in suspension‐cultured cells and also in planta suggest that suspension‐ Cultured cells can be useful to investigate the secretome of rice blast–pathogen interactions.
Abstract: Secreted proteins were investigated in rice suspension-cultured cells treated with rice blast fungus Magnaporthe grisea and its elicitor using biochemical and 2-DE coupled with MS analyses followed by their in planta mRNA expression analysis. M. grisea and elicitor successfully interacted with suspension-cultured cells and prepared secreted proteins from these cultures were essentially intracellular proteins free. Comparative 2-D gel analyses identified 21 differential protein spots due to M. grisea and/or elicitor over control. MALDI-TOF-MS and μLC-ESI-MS/MS analyses of these protein spots revealed that most of assigned proteins were involved in defense such as nine chitinases, two germin A/oxalate oxidases, five domain unknown function 26 (DUF 26) secretory proteins, and β-expansin. One chitin binding chitinase protein was isolated using chitin binding beads and strong enzymatic activity was identified in an in-gel assay. Interestingly, their protein abundance correlated well at transcript levels in elicitor-treated cultures as judged by semi-quantitative RT-PCR. Each identified differentially expressed protein group was compared at transcript levels in rice leaves inoculated with incompatible (KJ401) and compatible (KJ301) races of M. grisea. Time-course profiling revealed their inductions were stronger and earlier in incompatible than compatible interactions. Identified secreted proteins and their expression correlation at transcript level in suspension-cultured cells and also in planta suggest that suspension-cultured cells can be useful to investigate the secretome of rice blast–pathogen interactions.

76 citations

Journal ArticleDOI
TL;DR: This is the first study reporting the introduction of rice chitinase gene into finger millet for leaf blast resistance and transgenic plants showed high level of resistance to leaf blast disease compared to control plants.
Abstract: Finger millet plants conferring resistance to leaf blast disease have been developed by inserting a rice chitinase (chi11) gene through Agrobacterium-mediated transformation. Plasmid pHyg-Chi.11 harbouring the rice chitinase gene under the control of maize ubiquitin promoter was introduced into finger millet using Agrobacterium strain LBA4404 (pSB1). Transformed plants were selected and regenerated on hygromycin-supplemented medium. Transient expression of transgene was confirmed by GUS histochemical staining. The incorporation of rice chitinase gene in R0 and R1 progenies was confirmed by PCR and Southern blot analyses. Expression of chitinase gene in finger millet was confirmed by Western blot analysis with a barley chitinase antibody. A leaf blast assay was also performed by challenging the transgenic plants with spores of Pyricularia grisea. The frequency of transient expression was 16.3% to 19.3%. Stable frequency was 3.5% to 3.9%. Southern blot analysis confirmed the integration of 3.1 kb chitinase gene. Western blot analysis detected the presence of 35 kDa chitinase enzyme. Chitinase activity ranged from 19.4 to 24.8. In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of rice chitinase gene into finger millet for leaf blast resistance.

75 citations

Journal ArticleDOI
TL;DR: An efficient conversion of chitin, the second most abundant renewable polymer on the Earth, into N-acetylglucosamine and N,N′-diacetylchitobiose, using room temperature ionic liquids (RTILs) and commercially available chit inases is described for the first time.

75 citations

Journal ArticleDOI
01 Jun 1992-Planta
TL;DR: It is concluded that proteins characteristic of the defense reaction accumulate in the cortex of nodules independently of their ability to fix nitrogen, and in the entire body of hypersensitively reacting nodules.
Abstract: Chitinase and peroxidase, two enzymes thought to be involved in the defense of plants against pathogens, were measured in soybean (Glycine max L. Merr.) roots and in nodules colonized by Bradyrhizobium japonicum strains differing in their symbiotic potential. Activities of both enzymes were higher in nodules than in roots. In "effective", nitrogen-fixing nodules, colonized by wild-type bacteria, chitinase and peroxidase activities had low levels in the central infected zone and were enhanced primarily in the nodule cortex. An ascorbate-specific peroxidase, possibly involved in radical scavenging, had similarly high activities in the infected zone and in the cortex. "Ineffective" nodules colonized by bacteria unable to fix nitrogen symbiotically showed a similar distribution of chitinase and peroxidase. In another type of "ineffective" nodule, colonized by a B. japonicum strain eliciting a hypersensitive response, activities of both enzymes were enhanced to a similar degree in the infected zone as well as in the cortex. Tissue prints using a direct assay for peroxidase and an antiserum against bean chitinase corroborated these results. The antiserum against bean chitinase cross-reacted with a nodule protein of Mr 32 000; it inhibited most of the chitinase activity in the nodules but barely affected the chitinase in uninfected roots. It is concluded that proteins characteristic of the defense reaction accumulate in the cortex of nodules independently of their ability to fix nitrogen, and in the entire body of hypersensitively reacting nodules.

75 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
85% related
Protease
28.9K papers, 945.8K citations
84% related
Germination
51.9K papers, 877.9K citations
84% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
cDNA library
17.3K papers, 930.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022337
2021148
2020172
2019154
2018152