scispace - formally typeset
Search or ask a question
Topic

Chitinase

About: Chitinase is a research topic. Over the lifetime, 4690 publications have been published within this topic receiving 161786 citations. The topic is also known as: 1,4-beta-poly-N-acetylglucosaminidase & poly-beta-glucosaminidase.


Papers
More filters
Journal ArticleDOI
TL;DR: X-ray diffraction analysis of chitin synthesized in the presence of Calcofluor revealed the absence of crystallinity as long as the material was kept in wet conditions, and results strongly suggest the existence of a gap between polymerization and crystallization of Chitin chains.
Abstract: Chitin synthase activity of membrane preparations from hyphae of Schizophyllum commune was strongly inhibited by added chitinase because chitin immediately after its synthesis was highly susceptible to chitinase. In the absence of synthesis, chitin became more resistant to chitinase with time. Chitin synthesized in the presence of the optical brightener Calcofluor White M2R was extremely susceptible to degradation by chitinase and this susceptibility was maintained for a long time. X-ray diffraction analysis of chitin synthesized in the presence of Calcofluor revealed the absence of crystallinity as long as the material was kept in wet conditions. After drying, discrete deflections characteristic for α-chitin appeared concomitant with a decrease in the susceptibility for chitinase. These results strongly suggest the existence of a gap between polymerization and crystallization of chitin chains.

67 citations

Journal ArticleDOI
TL;DR: A kinetic analysis for the enzymatic hydrolysis of 3-hydroxybutyrate oligomers of various sizes has suggested that the catalytic domain of the enzyme recognizes at least two monomeric units as substrates.
Abstract: The extracellular polyhydroxybutyrate (PHB) depolymerase gene (phaZPst) of Pseudomonas stutzeri was cloned and sequenced. phaZPst was composed of 1,728 bp encoding a protein of 576 amino acids. Analyses of the N-terminal amino acid sequence and the matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrum of the purified enzyme showed that the mature enzyme consisted of 538 amino acids with a deduced molecular mass of 57,506 Da. Analysis of the deduced amino acid sequence of the protein revealed a domain structure containing a catalytic domain, putative linker region, and two putative substrate-binding domains (SBDI and SBDII). The putative linker region was similar to the repeating units of the cadherin-like domain of chitinase A from Vibrio harveyi and chitinase B from Clostridium paraputrificum. The binding characteristics of SBDs to poly([R]-3-hydroxybutyrate) [P(3HB)] and chitin granules were characterized by using fusion proteins of SBDs with glutathione S-transferase (GST). These GST fusion proteins with SBDII and SBDI showed binding activity toward P(3HB) granules but did not bind on chitin granules. It has been suggested that the SBDs of the depolymerase interact specifically with the surface of P(3HB). In addition, a kinetic analysis for the enzymatic hydrolysis of 3-hydroxybutyrate oligomers of various sizes has suggested that the catalytic domain of the enzyme recognizes at least two monomeric units as substrates.

67 citations

Journal ArticleDOI
TL;DR: Processing of PvChi4 was not detected in incompatible interactions with a nonhost strain of F. solani and in symbiotic interactions with Glomus mosseae, and thus may be important only in compatible interactions with F.solani.
Abstract: Three chitinase isoenzymes, PvChiE, PvChiF, and PvChiG (molecular masses 29, 28, and 27 kD, respectively), were purified from bean (Phaseolus vulgaris L. cv Saxa) roots infected with the fungal pathogen Fusarium solani f. sp. phaseoli, and their amino acid sequence was partially determined. All sequences from all three isoenzymes exactly matched deduced amino acid sequences of the bean class IV chitinase PvChi4, formerly called PR4. The N terminus of PvChiF mapped to the hinge region, and the N terminus of PvChiG mapped to the catalytic domain of PvChi4. The N terminus of PvChiE was blocked. The appearance of PvChiE, PvChiF, and PvChiG correlated with an increase in protease activity in infected roots, and they could be generated in vitro by mixing extracts with high protease activity with extracts containing high amounts of PvChi4. Extracts from infected roots prepared in the presence of protease inhibitors also contained the processed forms of PvChi4, indicating that processing occurred in planta and not as an artifact of extraction. Processing of PvChi4 was not detected in incompatible interactions with a nonhost strain of F. solani and in symbiotic interactions with Glomus mosseae, and thus may be important only in compatible interactions with F. solani.

67 citations

Journal ArticleDOI
TL;DR: A good correlation was observed between chitinase activity and fungal pathogen resistance and the integration pattern of transgene in the nuclear genome of the putative transformed plants (T0) was confirmed through Southern hybridization analysis of the genomic DNA.
Abstract: A Rice chitinase-3 under enhance version of CaMV 35S was introduced into peanut (Arachis hypogaea L.) through Agrobacterium mediation. Agrobacterium tumefaciens strain LB4404 was used harboring the binary vector (pB1333-EN4-RCG3) containing the chitinase (chit) and hygromycin resistance (hpt) gene as selectable marker. Putative transgenic shoots were regenerated and grown on MS medium supplemented with 5 mg/l BAP, 1 mg/l kinetin, and 30 mg/l hygromycin. Elongated shoots were examined for the presence of the integrated rice chitinase gene along with hygromycin gene as selectable. The integration pattern of transgene in the nuclear genome of the putative transformed plants (T(0)) was confirmed through Southern hybridization analysis of the genomic DNA. Survival rate of the in vitro regenerated plantlets was over 60% while healthy putatively transgenic (T(0)) plants with over 42% transformation frequency were produced through Agrobacterium mediated gene transfer of the rice chitinase gene and all the plants flowered and set seed normally. T1 plants were tested for resistance against Cercospora arachidicola by infection with the microspores. Transgenic strains exhibited a higher resistance than the control (non-transgenic plants). chitinase gene expression in highly resistant transgenic strains was compared to that of a susceptible control. A good correlation was observed between chitinase activity and fungal pathogen resistance.

67 citations

Journal ArticleDOI
TL;DR: SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases, but also interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients.
Abstract: SnTox1 induces programmed cell death and the up-regulation of pathogenesis-related genes including chitinases. Additionally, SnTox1 has structural homology to several plant chitin-binding proteins. Therefore, we evaluated SnTox1 for chitin binding and localization. We transformed an avirulent strain of Parastagonospora nodorum as well as three nonpathogens of wheat (Triticum aestivum), including a necrotrophic pathogen of barley, a hemibiotrophic pathogen of sugar beet and a saprotroph, to evaluate the role of SnTox1 in infection and in protection from wheat chitinases. SnTox1 bound chitin and an SnTox1-green fluorescent fusion protein localized to the mycelial cell wall. Purified SnTox1 induced necrosis in the absence of the pathogen when sprayed on the leaf surface and appeared to remain on the leaf surface while inducing both epidermal and mesophyll cell death. SnTox1 protected the different fungi from chitinase degradation. SnTox1 was sufficient to change the host range of a necrotrophic pathogen but not a hemibiotroph or saprotroph. Collectively, this work shows that SnTox1 probably interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients, but SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases.

67 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
85% related
Protease
28.9K papers, 945.8K citations
84% related
Germination
51.9K papers, 877.9K citations
84% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
cDNA library
17.3K papers, 930.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022337
2021148
2020172
2019154
2018152