scispace - formally typeset
Search or ask a question
Topic

Chitinase

About: Chitinase is a research topic. Over the lifetime, 4690 publications have been published within this topic receiving 161786 citations. The topic is also known as: 1,4-beta-poly-N-acetylglucosaminidase & poly-beta-glucosaminidase.


Papers
More filters
Journal ArticleDOI
TL;DR: A dual function of the Ustilago maydis fungalysin UmFly1 is described in modulation of both plant and fungal chitinases, hypothesizing that co-evolution of U. maydis with its host plant extended the endogenous function of Um fly1 towards the modulation of plant chit inase activity to promote infection.
Abstract: Fungalysins from several phytopathogenic fungi have been shown to be involved in cleavage of plant chitinases. While fungal chitinases are responsible for cell wall remodeling during growth and morphogenesis, plant chitinases are important components of immunity. This study describes a dual function of the Ustilago maydis fungalysin UmFly1 in modulation of both plant and fungal chitinases. Genetic, biochemical and microscopic experiments were performed to elucidate the in vitro and in planta functions of U. maydis UmFly1. U. maydis ∆umfly1 mutants show significantly reduced virulence, which coincides with reduced cleavage of the maize chitinase ZmChiA within its chitin-binding domain. Moreover, deletion of umfly1 affected the cell separation of haploid U. maydis sporidia. This phenotype is associated with posttranslational activation of the endogenous chitinase UmCts1. Genetic complementation of the ∆umfly1 mutant with a homologous gene from closely related, but nonpathogenic, yeast fully rescued the cell separation defect in vitro, but it could not recover the ∆umfly1 defect in virulence and cleavage of the maize chitinase. We report on the dual function of the secreted fungalysin UmFly1. We hypothesize that co-evolution of U. maydis with its host plant extended the endogenous function of UmFly1 towards the modulation of plant chitinase activity to promote infection.

60 citations

Journal ArticleDOI
TL;DR: Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: FUSarium culmorum, Fusarium solani and Rhizoctonia solani.
Abstract: Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6 days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43 kDa. The highest activity was obtained at 40 °C for both crude and purified enzymes. The crude chitinase activity was stable during 180 min incubation at 40 °C, but purified chitinase lost about 25 % of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.

60 citations

Journal ArticleDOI
TL;DR: Results suggest involvement of the chitinase gene in protection of pepper plants against the pathogen, but also document cross talk with stress signals mediated by ABA, high salinity and drought.
Abstract: Northern blot and in situ hybridization analyses revealed that a pepper basic class II chitinase gene (CAChi2) is constitutively expressed in floral organs and root endodermis, but not in leaf, stem and fruit of pepper. Resistance of pepper leaves to Colletotrichum coccodes infection at a late growth stage was correlated with induction of beta-1,3-glucanase and PR-1 mRNA, but not of chitinase (CAChi2) mRNA. Transcriptional activation of the CAChi2 gene in pepper leaves occurred during anthracnose development. The CAChi2 transcripts were mainly localized in phloem cells of vascular tissues of pepper leaves infected with C. coccodes. The CAChi2 gene was also differentially induced in leaf and stem tissue by treatment with abscisic acid (ABA), sodium chloride or drought. Strong accumulation of the CAChi2 transcripts occurred in pepper stem tissues due to high salt and drought, and also due to treatment with ABA. These results suggest involvement of the chitinase gene in protection of pepper plants against the pathogen, but also document cross talk with stress signals mediated by ABA, high salinity and drought.

60 citations

Journal ArticleDOI
29 Dec 1995-Gene
TL;DR: It is proposed that CTS1 and CTS2 of Ci are members of two distinct classes of fungal chitinases, an observation not previously reported for a single fungus.

60 citations

Journal ArticleDOI
TL;DR: Positive responses of ScChi to the biotic and abiotic stimuli reveal that this gene is a stress-related gene of sugarcane, suggesting a close relationship between the expression of Sc Chi and plant immunity.
Abstract: Chitinases (EC 3.2.2.14), expressed during the plant-pathogen interaction, are associated with plant defense against pathogens. In the present study, a positive correlation between chitinase activity and sugarcane smut resistance was found. ScChi (GenBank accession no. KF664180), a Class III chitinase gene, encoded a 31.37 kDa polypeptide, was cloned and identified. Subcellular localization revealed ScChi targeting to the nucleus, cytoplasm and the plasma membrane. Real-time quantitative PCR (RT-qPCR) results showed that ScChi was highly expressed in leaf and stem epidermal tissues. The ScChi transcript was both higher and maintained longer in the resistance cultivar during challenge with Sporisorium scitamineum. The ScChi also showed an obvious induction of transcription after treatment with SA (salicylic acid), H2O2, MeJA (methyl jasmonate), ABA (abscisic acid), NaCl, CuCl2, PEG (polyethylene glycol) and low temperature (4 °C). The expression levels of ScChi and six immunity associated marker genes were upregulated by the transient overexpression of ScChi. Besides, histochemical assay of Nicotiana benthamiana leaves overexpressing pCAMBIA 1301-ScChi exhibited deep DAB (3,3'-diaminobenzidinesolution) staining color and high conductivity, indicating the high level of H2O2 accumulation. These results suggest a close relationship between the expression of ScChi and plant immunity. In conclusion, the positive responses of ScChi to the biotic and abiotic stimuli reveal that this gene is a stress-related gene of sugarcane.

60 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
85% related
Protease
28.9K papers, 945.8K citations
84% related
Germination
51.9K papers, 877.9K citations
84% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
cDNA library
17.3K papers, 930.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022337
2021148
2020172
2019154
2018152