scispace - formally typeset
Search or ask a question
Topic

Chitinase

About: Chitinase is a research topic. Over the lifetime, 4690 publications have been published within this topic receiving 161786 citations. The topic is also known as: 1,4-beta-poly-N-acetylglucosaminidase & poly-beta-glucosaminidase.


Papers
More filters
Journal ArticleDOI
TL;DR: The results from these experiments indicated that chitinase of F. chlamydosporum plays an important role in the biocontrol of groundnut rust.
Abstract: Chitinase (EC 3.2.1.14) was isolated from the culture filtrate of Fusarium chlamydosporum and purified by ion-exchange chromatography and gel filtration. The molecular mass of purified chitinase wa...

138 citations

Journal ArticleDOI
TL;DR: It is concluded that the remaining chitin, i.e., greater than 90% of the total, is in the septa of Saccharomyces cervisiae primary septa, and the facilitation of chitIn removal from the cell wall by beta-(1 leads to 6)-glucanase indicates a strong association between chit in and beta-( 1 leads to 7)-gl glucanase.
Abstract: The distribution of chitin in Saccharomyces cervisiae primary septa and cell walls was studied with three methods: electron microscopy of colloidal gold particles coated either with wheat germ agglutinin or with one of two different chitinases, fluorescence microscopy with fluorescein isothiocyanate derivatives of the same markers, and enzymatic treatments of [14C]glucosamine-labeled cells. The septa were uniformly and heavily labeled with the gold-attached markers, an indication that chitin was evenly distributed throughout. To study the localization of chitin in lateral walls, alkali-extracted cell ghosts were used. Observations by electron and fluorescence microscopy suggest that lectin-binding material is uniformly distributed over the whole cell ghost wall. This material also appears to be chitin, on the basis of the analysis of the products obtained after treatment of 14C-labeled cell ghosts with lytic enzymes. The chitin of lateral walls can be specifically removed by treatment with beta-(1 leads to 6)-glucanase containing a slight amount of chitinase. During this incubation approximately 7% of the total radioactivity is solubilized, about the same amount liberated when lateral walls of cell ghosts are completely digested with snail glucanase yield primary septa. It is concluded that the remaining chitin, i.e., greater than 90% of the total, is in the septa. The facilitation of chitin removal from the cell wall by beta-(1 leads to 6)-glucanase indicates a strong association between chitin and beta-(1 leads to 6)-glucan. Covalent linkages between the two polysaccharides were not detected but cannot be excluded.

137 citations

Journal ArticleDOI
TL;DR: Stenotrophomonas maltophilia strain C3, a biocontrol agent of Bipolaris sorokiniana in turfgrass, produces at least two chitinases that are antifungal, and partial amino acid sequences of the 32, 65, and 75-kDa proteins indicated that they are homologous to known bacterial chit inases.
Abstract: Stenotrophomonas maltophilia strain C3, a biocontrol agent of Bipolaris sorokiniana in turfgrass, produced chitinases in broth media containing chitin. Chitinases were partially purified from culture fluid by ammonium sulfate precipitation and chitin affinity chromatography. The chromatography fraction with the highest specific chitinase activity was inhibitory to conidial germination and germ-tube elongation of B. sorokiniana, but it was less inhibitory than the protein fraction or the raw culture filtrate. The fraction exhibited strong exochitinase and weak endo-chitinase activity. Optimum temperature and pH for chitinase activity were 45 to 50 degrees C and 4.5 to 5.0, respectively. Chitinase activity was inhibited by Hg(2+) and Fe(3+), but not by other metal ions or enzyme inhibitors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the chromatography fraction revealed the presence of five protein bands of 25, 32, 48, 65, and 75 kDa. Partial amino acid sequences of the 32-, 65-, and 75-kDa proteins indicated that they are homologous to known bacterial chitinases. There was no homology found in the partial amino acid sequences of the 25- and 48-kDa proteins to any known chitinases. Five chitinase-active proteins were detected in the protein and chromatography fractions by activity gels, but when each protein was extracted and re-electrophoresed separately under denaturing conditions, only 32- or 48-kDa proteins were revealed. It was concluded that strain C3 produces at least two chitinases that are antifungal.

137 citations

Journal ArticleDOI
TL;DR: Structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble ch itin are defined and relevant binding within the context of the fungal cell wall is demonstrated.

137 citations

Journal ArticleDOI
Chun Geun Lee1
TL;DR: Recent findings on the role of chitin and C/CLP in allergic inflammation and tissue remodeling will be highlighted and controversial and unsolved issues in this field of studies will be discussed.
Abstract: Chitin, the second most abundant polysaccharide in nature after cellulose, consist exoskeleton of lower organisms such as fungi, crustaceans and insects except mammals. Recently, several studies evaluated immunologic effects of chitin in vivo and in vitro and revealed new aspects of chitin regulation of innate and adaptive immune responses. It has been shown that exogenous chitin activates macrophages and other innate immune cells and also modulates adaptive type 2 allergic inflammation. These studies further demonstrate that chitin stimulate macrophages by interacting with different cell surface receptors such as macrophage mannose receptor, toll-like receptor 2 (TLR-2), C-type lectin receptor Dectin-1, and leukotriene B4 recepptor (BLT1). On the other hand, a number of chitinase or chitinase-like proteins (C/CLP) are ubiquitously expressed in the airways and intestinal tracts from insects to mammals. In general, these chitinase family proteins confer protective functions to the host against exogenous chitin-containing pathogens. However, substantial body of recent studies also set light on new roles of C/CLP in the development and progression of allergic inflammation and tissue remodeling. In this review, recent findings on the role of chitin and C/CLP in allergic inflammation and tissue remodeling will be highlighted and controversial and unsolved issues in this field of studies will be discussed.

137 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
85% related
Protease
28.9K papers, 945.8K citations
84% related
Germination
51.9K papers, 877.9K citations
84% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
cDNA library
17.3K papers, 930.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022337
2021148
2020172
2019154
2018152