scispace - formally typeset
Search or ask a question
Topic

Chitinase

About: Chitinase is a research topic. Over the lifetime, 4690 publications have been published within this topic receiving 161786 citations. The topic is also known as: 1,4-beta-poly-N-acetylglucosaminidase & poly-beta-glucosaminidase.


Papers
More filters
Journal ArticleDOI
TL;DR: A plant’s investment in resistance-related compounds can be severely constrained under limiting nitrogen supply, and under such conditions the increase of chitosanase activity after resistance induction was severely delayed, although the induced maximum activity of chitonase was not significantly affected.
Abstract: Knowledge about the induced pathogen resistance of plants is rapidly increasing, but little information exists on its dependence on abiotic growing conditions. Arabidopsis thaliana plants that had been cultivated under different nitrogen regimes were treated with BION ® , a chemical resistance elicitor. The activities of three enzyme classes functionally involved in resistance (chitinase, chitosanase and peroxidase) were quantified over 8 d following treatment as resistance markers. Constitutive levels of three markers and the induced level of peroxidase and chitinase activity were significantly lower under limiting nitrogen supply. Under such conditions the increase of chitosanase activity after resistance induction was severely delayed, although the induced maximum activity of chitosanase was not significantly affected. Total soluble protein content decreased during the first 12 h after resistance elicitation. Thereafter, the induced plants cultivated under high N conditions reached higher protein contents than controls, whereas N-limited induced plants continuously had reduced protein contents. A plant’s investment in resistance-related compounds can be severely constrained under limiting nitrogen supply.

113 citations

Journal ArticleDOI
TL;DR: Native fluorescent pseudomonads isolated from the rhizosphere of Lotus corniculatus were screened in vitro for their antagonistic activity against the phytopathogenic fungi Pythium ultimum and Rhizoctonia solani and three Pseudomonas fluorescens strains were selected.
Abstract: Native fluorescent pseudomonads isolated from the rhizosphere of Lotus corniculatus were screened in vitro for their antagonistic activity against the phytopathogenic fungi Pythium ultimum and Rhizoctonia solani. About 12% of the bacterial isolates inhibited one or both fungi in vitro. Isolates which exhibited the greatest antagonistic activity were assayed in vivo against the pathogens. Three Pseudomonas fluorescens strains were selected from these assays: UP61, UP143 and UP148. These strains produced HCN and siderophores, but addition of iron to the medium did not affect the antagonistic activity. Lytic enzymes such as chitinase and β-1,3-glucanase were not detected. The simultaneous inoculation of Pseudomonas strains and Rhizobium loti B816 did not affect nitrogen fixation efficiency in L. corniculatus plants. Sterile peat was successful as a carrier for these P. fluorescens strains.

113 citations

Journal ArticleDOI
TL;DR: Evidence is provided for a covalent linkage between chitin and beta-(1,6)-glucan through a glycosidic linkage at position 6 of N-acetylglucosamine and position 1 of the glucose in the glucan.
Abstract: Summary: The alkali-insoluble glucan was isolated from regenerating spheroplasts and intact cells of Candida albicans. Sequential enzymic hydrolysis of this fraction by Zymolyase 100T and purified chitinase and subsequent gel filtration produced a fraction which was enriched in glycosaminoglycans. This fraction was analysed by partial acid hydrolysis, TLC and GLC-MS. The GLC-MS peaks identified included 2,3,4,6-tetra-O-methylglucitol acetate and 2,3,4-tri-O-methylglucitol acetate of β-1,6-glucan and the 3,6-di-O-methyl-2-N-methylglucosaminitol acetate of chitin. In addition, 3-O-methyl-2-N-methylglucosaminitol acetate was identified, which indicated a branch point in chitin. These data provide evidence for a covalent linkage between chitin and β-(1,6)-glucan through a glycosidic linkage at position 6 of N-acetylglucosamine and position 1 of the glucose in the glucan.

113 citations

Journal ArticleDOI
TL;DR: The response of peach fruit to elicitor treatment is similar to that seen in other plant-elicitors interactions and suggests the involvement of peach biochemical defense responses in UV-C-mediated disease resistance.
Abstract: Treatment of peach fruit with UV-C light caused a rapid induction of chitinase, beta-1,3-glucanase, and phenylalanine ammonia lyase (PAL) activities starting 6 h after treatment and reaching maximum levels at 96 h after treatment. By 96 h after UV-C treatment, chitinase, beta-1,3-glucanase, and PAL activities in UV-C-treated fruit were over twofold above the levels observed for the control. In nontreated control fruit, no apparent increase in chitinase and beta-1,3-glucanase activities was detected but a minor increase in PAL activity was seen. The transient increase in chitinase, beta-1,3-glucanase, and PAL activities in UV-C-treated fruit was preceded by a gradual activation of the corresponding genes. UV-C-treated fruit showed an increase in accumulation of beta-1,3-glucanase and chitinase mRNAs at 3 h after treatment, which peaked approximately 96 h posttreatment. A similar induction kinetic pattern was observed for PAL mRNA in response to UV-C treatment, except the induction started 6 h after UV-C treatment. These results show that the response of peach fruit to elicitor treatment is similar to that seen in other plant-elicitors interactions and suggests the involvement of peach biochemical defense responses in UV-C-mediated disease resistance.

112 citations

Journal ArticleDOI
01 Jun 1988-Planta
TL;DR: The results indicate that chitinase and β-1,3-glucanase are regulated co-ordinately at the level of mRNA.
Abstract: Ethylene induced chitinase (EC 3.2.1.14) and β-1,3-glucanase (EC 3.2.1.29) to a similar extent in primary leaves of bean seedlings (Phaseolus vulgaris cv. Saxa). Both enzymes were purified from ethylene-treated leaves, and monospecific antibodies were raised aginst them. Ethylene treatments strongly increased the amount of immunore-active chitinase and β-1,3-glucanase. Ethylene enhanced synthesis of chitinase in vivo, as tested by immunoprecipitation after pulse-labelling with [35S]methionine. RNA was isolated from bean leaves and translated in a rabbit reticulocyte lysate system in vitro. The chitinase and the β-1,3-glucanase antiserum each precipitated a single polypeptide from the translation products. The precipitated polypeptides were 1500 and 4000 daltons larger, respectively, than native chitinase and native β-1,3-glucanase, indicating that the two enzymes were synthesized as precursors in vitro. The translatable mRNAs for both enzymes increased at least tenfold within 2 h in response to a treatment with ethylene. When ethylene was withdrawn after 8 h of incubation, the translatable mRNAs for both enzymes decreased somewhat more slowly, reaching the basal level about 25 h later. In all cases, there was a close correlation between the levels of translatable mRNA for chitinase and β-1,3-glucanase. A putative β-1,3-glucanase cDNA clone, pCH16, was isolated by hybrid-selected translation. The amount of β-1,3-glucanase mRNA, as measured by RNA blot analysis using pCH16 as a probe, increased rapidly in response to ethylene and decreased again after withdrawal of ethylene, indicating that the amount of hybridizable RNA and of translatable mRNA for β-1,3-glucanase were correlated. In conclusion, the results indicate that chitinase and β-1,3-glucanase are regulated co-ordinately at the level of mRNA.

111 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
85% related
Protease
28.9K papers, 945.8K citations
84% related
Germination
51.9K papers, 877.9K citations
84% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
cDNA library
17.3K papers, 930.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022337
2021148
2020172
2019154
2018152