scispace - formally typeset
Search or ask a question
Topic

Chitinase

About: Chitinase is a research topic. Over the lifetime, 4690 publications have been published within this topic receiving 161786 citations. The topic is also known as: 1,4-beta-poly-N-acetylglucosaminidase & poly-beta-glucosaminidase.


Papers
More filters
Journal ArticleDOI
15 May 2018-Mycology
TL;DR: The importance of chitin forms and chit inases in the plant–fungal interactions and their role in persistent and possible biocontrol is discussed.
Abstract: Chitin is the second abundant polysaccharide in the world after cellulose. It is a vital structural component of the fungal cell wall but not for plants. In plants, fungi are recognised through the perception of conserved microbe-associated molecular patterns (MAMPs) to induce MAMP-triggered immunity (MTI). Chitin polymers and their modified form, chitosan, induce host defence responses in both monocotyledons and dicotyledons. The plants' response to chitin, chitosan, and derived oligosaccharides depends on the acetylation degree of these compounds which indicates possible biocontrol regulation of plant immune system. There has also been a considerable amount of recent research aimed at elucidating the roles of chitin hydrolases in fungi and plants as chitinase production in plants is not considered solely as an antifungal resistance mechanism. We discuss the importance of chitin forms and chitinases in the plant-fungal interactions and their role in persistent and possible biocontrol. Abbreviations ET, ethylene; GAP, GTPase-activating protein; GEF, GDP/GTP exchange factor; JA, jasmonic acid; LysM, lysin motif; MAMP, microbe-associated molecular pattern; MTI, MAMP-triggered immunity; NBS, nucleotide-binding site; NBS-LRR, nucleotide-binding site leucine-rich repeats; PM, powdery mildew; PR, pathogenesis-related; RBOH, respiratory burst oxidase homolog; RLK, receptor-like kinase; RLP, receptor-like protein; SA, salicylic acid; TF, transcription factor.

106 citations

Journal ArticleDOI
TL;DR: The mechanisms of host chitinase responses may have implications for diagnostic assays as well as novel therapeutic approaches for patients that are at risk of contracting fatal fungal infections.
Abstract: The human immune system is capable of recognizing and degrading chitin, an important cell wall component of pathogenic fungi. In the context of host-immune responses to fungal infections, herein we review the particular contributions and interplay of fungus and chitin recognition, and chitin-degrading enzymes, known as chitinases. The mechanisms of host chitinase responses may have implications for diagnostic assays as well as novel therapeutic approaches for patients that are at risk of contracting fatal fungal infections.

106 citations

Journal ArticleDOI
02 Sep 2014-eLife
TL;DR: It is found that chitinase is essential for bacteria to enter hyphae and grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.
Abstract: The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.

106 citations

Journal ArticleDOI
TL;DR: The structures of these enzymes in complex with argifin and argadin, together with mutagenesis, fluorescence, and enzymology, reveal that subtle changes in the binding site dramatically affect affinity and selectivity and show that it may be possible to develop specific chitinase inhibitors based on the argifIn/argadin scaffolds.

106 citations

Journal ArticleDOI
TL;DR: Data show that Chit33 is an enzyme involved in mycoparasitism; and its formation is controlled by induction, by either carbon or nitrogen starvation and, to a low degree, also under conditions of temperature stress.
Abstract: We investigated the regulation of chit33 expression in Trichoderma harzianum CECT 2413. This gene encodes the Chit33 endochitinase, which is a major component of the fungus' chitinolytic enzyme system and is important for biocontrol. To this end, both Northern analysis and reporter gene fusions of a 1.4-kb fragment of the 5'-upstream sequences of chit33 to the Aspergillus niger goxA gene (encoding glucose oxidase) and the Aquorea victoria green fluorescent protein were used. Northern analysis and data obtained with the reporter systems were compatible, thus showing that the 1.4-kb fragment bears all necessary information for the regulation of chit33 gene expression. chit33 is weakly expressed during growth on chitin and Rhizoctonia solani cell walls. The addition of N-acetylglucosamine transiently induced chit33 expression in resting cells of the fungus. The addition of either glucose or glycerol prevented induction of chit33 gene expression by chitin or cell walls. Incubation of T. harzianum in the presence of low concentrations (0.1%, w/v) of glucose and high concentrations (38 mM) of ammonium sulfate, or in the presence of high concentrations (1%, w/v) of glucose and low concentrations (0.38 mM) of ammonium sulfate also stimulated chit33-mRNA accumulation, although to a lower degree than induction by N-acetylglucosamine. Transfer of T. harzianum cultures to either 40 degrees C or 4 degrees C initiated a very rapid expression of chit33 in the absence of an inducer, yet only at very low levels (5%) of the induced control. Confrontation experiments, using the gfp gene as a reporter and R. solani as a host, showed that chit33 is expressed only during but not before the stage of overgrowth on R. solani. These data show that Chit33 is an enzyme involved in mycoparasitism; and its formation is controlled by induction, by either carbon or nitrogen starvation and, to a low degree, also under conditions of temperature stress.

106 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
85% related
Protease
28.9K papers, 945.8K citations
84% related
Germination
51.9K papers, 877.9K citations
84% related
Gel electrophoresis
26K papers, 1.1M citations
83% related
cDNA library
17.3K papers, 930.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022337
2021148
2020172
2019154
2018152