scispace - formally typeset
Search or ask a question
Topic

Chromosomal inversion

About: Chromosomal inversion is a research topic. Over the lifetime, 2873 publications have been published within this topic receiving 85416 citations. The topic is also known as: Chromosome inversion.


Papers
More filters
Journal ArticleDOI
01 Dec 1992-Genetics
TL;DR: Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.
Abstract: High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.

1,636 citations

Journal ArticleDOI
14 Oct 2005-Science
TL;DR: Findings support the association of rare SLITRK1 sequence variants with TS by identifying a frameshift mutation and two independent occurrences of the identical variant in the binding site for microRNA hsa-miR-189.
Abstract: Tourette's syndrome (TS) is a genetically influenced developmental neuropsychiatric disorder characterized by chronic vocal and motor tics. We studied Slit and Trk-like 1 (SLITRK1) as a candidate gene on chromosome 13q31.1 because of its proximity to a de novo chromosomal inversion in a child with TS. Among 174 unrelated probands, we identified a frameshift mutation and two independent occurrences of the identical variant in the binding site for microRNA hsa-miR-189. These variants were absent from 3600 control chromosomes. SLITRK1 mRNA and hsa-miR-189 showed an overlapping expression pattern in brain regions previously implicated in TS. Wild-type SLITRK1, but not the frameshift mutant, enhanced dendritic growth in primary neuronal cultures. Collectively, these findings support the association of rare SLITRK1 sequence variants with TS.

973 citations

Journal ArticleDOI
01 May 2006-Genetics
TL;DR: The evolution of inversions that capture locally adapted alleles when two populations are exchanging migrants or hybridizing is studied to cause loci responsible for adaptive species-specific differences to map to inversions.
Abstract: We study the evolution of inversions that capture locally adapted alleles when two populations are exchanging migrants or hybridizing. By suppressing recombination between the loci, a new inversion can spread. Neither drift nor coadaptation between the alleles (epistasis) is needed, so this local adaptation mechanism may apply to a broader range of genetic and demographic situations than alternative hypotheses that have been widely discussed. The mechanism can explain many features observed in inversion systems. It will drive an inversion to high frequency if there is no countervailing force, which could explain fixed differences observed between populations and species. An inversion can be stabilized at an intermediate frequency if it also happens to capture one or more deleterious recessive mutations, which could explain polymorphisms that are common in some species. This polymorphism can cycle in frequency with the changing selective advantage of the locally favored alleles. The mechanism can establish underdominant inversions that decrease heterokaryotype fitness by several percent if the cause of fitness loss is structural, while if the cause is genic there is no limit to the strength of underdominance that can result. The mechanism is expected to cause loci responsible for adaptive species-specific differences to map to inversions, as seen in recent QTL studies. We discuss data that support the hypothesis, review other mechanisms for inversion evolution, and suggest possible tests.

948 citations

Journal ArticleDOI
01 Dec 1988-Genetics
TL;DR: Linkage maps based on a common set of restriction fragment length polymorphism markers provide a basis for uniting the previously separate disciplines of tomato and potato genetics and may now be possible to test theories about homologies or orthologies of other genes, including those coding for disease resistance and stress tolerances.
Abstract: Potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum) are members of the Solanaceae (nightshade family) and have the same basic chromosome number (x = 12). However, they cannot be cross-hybridized and, until now, it was unknown how conserved the gene order might be between these two species. We report herein the construction of a genetic linkage map of potato chromosomes based on genomic and cDNA clones from tomato. The potato map was drawn from segregation data derived from the interspecific cross S. phureja X (S. tuberosum X S. chacoense) (2n = 2x = 24), and consists of 135 markers defining 12 distinct linkage groups. Nearly all of the tomato probes tested hybridized to potato DNA, and in most cases, the copy number of the employed clones was the same in both species. Furthermore, all clones mapped to the same linkage group in both species. For nine chromosomes, the order of loci appears to be identical in the two species, while for the other three, intrachromosomal rearrangements are apparent, all of which appear to be paracentric inversions with one breakpoint at or near the centromere. These results are consistent with cytogenetic theory, previously untested in plants, which predicts that paracentric inversions will have the least negative effect on fitness and thus be the most likely form of chromosomal rearrangements to survive through evolutionary time. Linkage maps based on a common set of restriction fragment length polymorphism markers provide a basis for uniting the previously separate disciplines of tomato and potato genetics. Using these maps, it may now be possible to test theories about homologies or orthologies of other genes, including those coding for disease resistance and stress tolerances.

798 citations

Journal ArticleDOI
TL;DR: It is shown that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children and have higher recombination rates than noncarriers.
Abstract: A refined physical map of chromosome 17q21.31 uncovered a 900-kb inversion polymorphism. Chromosomes with the inverted segment in different orientations represent two distinct lineages, H1 and H2, that have diverged for as much as 3 million years and show no evidence of having recombined. The H2 lineage is rare in Africans, almost absent in East Asians but found at a frequency of 20% in Europeans, in whom the haplotype structure is indicative of a history of positive selection. Here we show that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children and have higher recombination rates than noncarriers.

775 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
84% related
Exon
38.3K papers, 1.7M citations
83% related
Locus (genetics)
42.7K papers, 2M citations
83% related
Allele
30.6K papers, 1.2M citations
82% related
Gene mutation
41.4K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
202245
202130
202045
201936
201830