scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome 21 published in 2010"


Journal ArticleDOI
28 Jan 2010-Nature
TL;DR: It is suggested that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within theMSY, and species differences in mating behaviour.
Abstract: The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.

393 citations


Journal ArticleDOI
TL;DR: The role of Hsa21-encoded miR-125b-2, a microRNA overexpressed in DS-AMKL/TL, in hematopoiesis and leukemogenesis is investigated and proposed as a positive regulator of megakaryopoiedis and an oncomiR involved in the pathogenesis of trisomy 21-associatedmegakaryoblastic leukemia.
Abstract: Children with trisomy 21/Down syndrome (DS) are at high risk to develop acute megakaryoblastic leukemia (DS-AMKL) and the related transient leukemia (DS-TL). The factors on human chromosome 21 (Hsa21) that confer this predisposing effect, especially in synergy with consistently mutated transcription factor GATA1 (GATA1s), remain poorly understood. Here, we investigated the role of Hsa21-encoded miR-125b-2, a microRNA (miRNA) overexpressed in DS-AMKL/TL, in hematopoiesis and leukemogenesis. We identified a function of miR-125b-2 in increasing proliferation and self-renewal of human and mouse megakaryocytic progenitors (MPs) and megakaryocytic/erythroid progenitors (MEPs). miR-125b-2 overexpression did not affect megakaryocytic and erythroid differentiation, but severely perturbed myeloid differentiation. The proproliferative effect of miR-125b-2 on MEPs accentuated the Gata1s mutation, whereas growth of DS-AMKL/TL cells was impaired upon miR-125b repression, suggesting synergism during leukemic transformation in GATA1s-mutated DS-AMKL/TL. Integrative transcriptome analysis of hematopoietic cells upon modulation of miR-125b expression levels uncovered a set of miR-125b target genes, including DICER1 and ST18 as direct targets. Gene Set Enrichment Analysis revealed that this target gene set is down-regulated in DS-AMKL patients highly expressing miR-125b. Thus, we propose miR-125b-2 as a positive regulator of megakaryopoiesis and an oncomiR involved in the pathogenesis of trisomy 21-associated megakaryoblastic leukemia.

222 citations


Journal ArticleDOI
TL;DR: A genetic approach was used to normalize the dosage of Olig1 and Olig2 and thereby rescued the inhibitory neuron phenotype in the Ts65Dn brain, and this data identify seminal alterations during brain development and suggest a mechanistic relationship between triplicated genes and these brain abnormalities in theTs65 Dn mouse.
Abstract: Down syndrome is caused by the triplication of chromosome 21, which results in extra copies of hundreds of genes. Chakrabarti et al. used the Ts65Dn mouse model of Down syndrome to show that Olig1 and Olig2, two transcription factor genes that are triplicated in Down syndrome and in the Ts65Dn mouse, are involved in the manifestation of the inhibition/excitation imbalance phenotype.

209 citations


Journal ArticleDOI
TL;DR: A new mouse model for DS that carries duplications spanning the entire Hsa21 syntenic regions on all three mouse chromosomes and may have the potential to serve as one of the reference models for further understanding the developmental cognitive disability associated with DS and may also be used for developing novel therapeutic interventions for this clinical manifestation of the disorder.
Abstract: Down syndrome (DS) is caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is the most common genetic cause for developmental cognitive disability. The regions on Hsa21 are syntenically conserved with three regions located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. In this report, we describe a new mouse model for DS that carries duplications spanning the entire Hsa21 syntenic regions on all three mouse chromosomes. This mouse mutant exhibits DS-related neurological defects, including impaired cognitive behaviors, reduced hippocampal long-term potentiation and hydrocephalus. These results suggest that when all the mouse orthologs of the Hsa21 genes are triplicated, an abnormal cognitively relevant phenotype is the final outcome of the elevated expressions of these orthologs as well as all the possible functional interactions among themselves and/or with other mouse genes. Because of its desirable genotype and phenotype, this mutant may have the potential to serve as one of the reference models for further understanding the developmental cognitive disability associated with DS and may also be used for developing novel therapeutic interventions for this clinical manifestation of the disorder.

205 citations


Journal ArticleDOI
TL;DR: Two bursts of gene gains occurred on the mammalian X chromosome contribute to an age-dependent chromosomal distribution of male-biased genes.
Abstract: Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

190 citations


Journal ArticleDOI
TL;DR: Massively parallel sequencing-by-ligation of maternal plasma DNA was effective in identifying T21 fetuses noninvasively and the quantitative biases observed among the GRs of certain chromosomes were more likely based on analytical factors than biological factors.
Abstract: Background: Noninvasive prenatal diagnosis of trisomy 21 (T21) has recently been shown to be achievable by massively parallel sequencing of maternal plasma on a sequencing-by-synthesis platform. The quantification of several other human chromosomes, including chromosomes 18 and 13, has been shown to be less precise, however, with quantitative biases related to the chromosomal GC content. Methods: Maternal plasma DNA from 10 euploid and 5 T21 pregnancies was sequenced with a sequencing-by-ligation approach. We calculated the genomic representations (GRs) of sequenced reads from each chromosome and their associated measurement CVs and compared the GRs of chromosome 21 (chr21) for the euploid and T21 pregnancies. Results: We obtained a median of 12 × 106 unique reads (21% of the total reads) per sample. The GRs deviated from those expected for some chromosomes but in a manner different from that previously reported for the sequencing-by-synthesis approach. Measurements of the GRs for chromosomes 18 and 13 were less precise than for chr21. z Scores of the GR of chr21 were increased in the T21 pregnancies, compared with the euploid pregnancies. Conclusions: Massively parallel sequencing-by-ligation of maternal plasma DNA was effective in identifying T21 fetuses noninvasively. The quantitative biases observed among the GRs of certain chromosomes were more likely based on analytical factors than biological factors. Further research is needed to enhance the precision for measuring for the representations of chromosomes 18 and 13.

178 citations


Journal ArticleDOI
TL;DR: This cytogenetic and molecular phylogenetic analysis revealed an unexpected WGD event in the ancestry of Australian crucifer species with diploid-like chromosome complements and corroborated the hybrid origin of the mesotetraploid ancestor.
Abstract: Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred approximately 6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.

170 citations


Journal ArticleDOI
TL;DR: The epigenetic-genetic chromosome-dosage approach is a new method for noninvasive prenatal detection of T21 and can be applied to all pregnancies because the genetic part of the analysis uses paternally inherited, fetal-specific genetic markers that are abundant in the genome.
Abstract: Background: The use of fetal DNA in maternal plasma for noninvasive prenatal diagnosis of trisomy 21 (T21) is an actively researched area. We propose a novel method of T21 detection that combines fetal-specific epigenetic and genetic markers. Methods: We used combined bisulfite restriction analysis to search for fetal DNA markers on chromosome 21 that were differentially methylated in the placenta and maternal blood cells and confirmed any target locus with bisulfite sequencing. We then used methylation-sensitive restriction endonuclease digestion followed by microfluidics digital PCR analysis to investigate the identified marker. Chromosome-dosage analysis was performed by comparing the dosage of this epigenetic marker with that of the ZFY (zinc finger protein, Y-linked) gene on chromosome Y. Results: The putative promoter of the HLCS (holocarboxylase synthetase) gene was hypermethylated in the placenta and hypomethylated in maternal blood cells. A chromosome-dosage comparison of the hypermethylated HLCS and ZFY loci could distinguish samples of T21 and euploid placental DNA. Twenty-four maternal plasma samples from euploid pregnancies and 5 maternal plasma samples from T21 pregnancies were analyzed. All but 1 of the euploid samples were correctly classified. Conclusions: The epigenetic–genetic chromosome-dosage approach is a new method for noninvasive prenatal detection of T21. The epigenetic part of the analysis can be applied to all pregnancies. Because the genetic part of the analysis uses paternally inherited, fetal-specific genetic markers that are abundant in the genome, broad population coverage should be readily achievable. This approach has the potential to become a generally usable technique for noninvasive prenatal diagnosis.

152 citations


Journal ArticleDOI
TL;DR: A modified DNA capture protocol is applied that, when used in combination with massively-parallel sequencing technology, facilitates efficient and highly-accurate resequencing of megabases of specified nuclear genomic regions from fecal DNA samples, suggesting it is now feasible to conduct genomic studies in natural populations for which constraints on invasive sampling have otherwise long been a barrier.
Abstract: Genomic-level analyses of DNA from non-invasive sources would facilitate powerful conservation and evolutionary studies in natural populations of endangered and otherwise elusive species. However, the typical low quantity and poor quality of DNA that is extracted from non-invasive samples have generally precluded such work. Here we apply a modified DNA capture protocol that, when used in combination with massively-parallel sequencing technology, facilitates efficient and highly-accurate resequencing of megabases of specified nuclear genomic regions from fecal DNA samples. We validated our approach by comparing genetic variants identified from corresponding fecal and blood DNA samples of six western chimpanzees (Pan troglodytes verus) across more than 1.5 megabases of chromosome 21, chromosome X, and the complete mitochondrial genome. Our results suggest that it is now feasible to conduct genomic studies in natural populations for which constraints on invasive sampling have otherwise long been a barrier. The data we collected also provided an opportunity to examine western chimpanzee genetic diversity at unprecedented scale. Despite high mitochondrial genome diversity (π = 0.585%), western chimpanzees have a low ratio (0.42) of X chromosomal (π = 0.034%) to autosomal (chromosome 21 π = 0.081%) sequence diversity, a pattern that may reflect an unusual demographic history of this subspecies.

137 citations


Journal ArticleDOI
TL;DR: Understanding the consequences of dosage imbalance attributable to trisomy 21 (T21) has accelerated because of recent advances in genome sequencing, comparative genome analysis, functional genome exploration, and the use of model organisms, and has important implications for other areas of research on the neurogenomics of cognition and behavior.
Abstract: Down syndrome (DS) is the most common example of a neurogenetic aneuploid disorder leading to mental retardation. In most cases, DS results from an extra copy of human chromosome 21 producing deregulated gene expression in brain that gives raise to subnormal intellectual functioning. Understanding the consequences of dosage imbalance attributable to trisomy 21 (T21) has accelerated because of recent advances in genome sequencing, comparative genome analysis, functional genome exploration, and the use of model organisms. This has led to new evidence-based therapeutic approaches to prevention or amelioration of T21 effects on brain structure and function (cognition) and has important implications for other areas of research on the neurogenomics of cognition and behavior.

132 citations


Journal ArticleDOI
10 Jun 2010-Nature
TL;DR: Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis, that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF.
Abstract: Down's syndrome (DS) is a genetic disorder caused by full or partial trisomy of human chromosome 21 and presents with many clinical phenotypes including a reduced incidence of solid tumours. Recent work with the Ts65Dn model of DS, which has orthologues of about 50% of the genes on chromosome 21 (Hsa21), has indicated that three copies of the ETS2 (ref. 3) or DS candidate region 1 (DSCR1) genes (a previously known suppressor of angiogenesis) is sufficient to inhibit tumour growth. Here we use the Tc1 transchromosomic mouse model of DS to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses roughly 81% of Hsa21 genes but not the human DSCR1 region. We transplanted B16F0 and Lewis lung carcinoma tumour cells into Tc1 mice and showed that growth of these tumours was substantially reduced compared with wild-type littermate controls. Furthermore, tumour angiogenesis was significantly repressed in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis (JAM-B and PTTG1IP), that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis, explaining the reduced tumour growth in DS. Furthermore, we expect that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will permit the identification of other endothelium-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients.


Journal ArticleDOI
TL;DR: This study demonstrates by luciferase/target mRNA 3′-untranslated region reporter assays that miR-155 and -802 can regulate the expression of the predicted mRNA target, the methyl-CpG-binding protein (MeCP2), and demonstrates that selective inactivation of Hsa21-derived miRNAs may provide a novel therapeutic tool in the treatment of DS.

Journal ArticleDOI
TL;DR: It is concluded that altered gene-specific DNA methylation is a recurrent and functionally relevant downstream response to trisomy 21 in human cells.
Abstract: The primary abnormality in Down syndrome (DS), trisomy 21, is well known; but how this chromosomal gain produces the complex DS phenotype, including immune system defects, is not well understood. We profiled DNA methylation in total peripheral blood leukocytes (PBL) and T-lymphocytes from adults with DS and normal controls and found gene-specific abnormalities of CpG methylation in DS, with many of the differentially methylated genes having known or predicted roles in lymphocyte development and function. Validation of the microarray data by bisulfite sequencing and methylation-sensitive Pyrosequencing (MS-Pyroseq) confirmed strong differences in methylation (p<0.0001) for each of 8 genes tested: TMEM131, TCF7, CD3Z/CD247, SH3BP2, EIF4E, PLD6, SUMO3, and CPT1B, in DS versus control PBL. In addition, we validated differential methylation of NOD2/CARD15 by bisulfite sequencing in DS versus control T-cells. The differentially methylated genes were found on various autosomes, with no enrichment on chromosome 21. Differences in methylation were generally stable in a given individual, remained significant after adjusting for age, and were not due to altered cell counts. Some but not all of the differentially methylated genes showed different mean mRNA expression in DS versus control PBL; and the altered expression of 5 of these genes, TMEM131, TCF7, CD3Z, NOD2, and NPDC1, was recapitulated by exposing normal lymphocytes to the demethylating drug 5-aza-2′deoxycytidine (5aza-dC) plus mitogens. We conclude that altered gene-specific DNA methylation is a recurrent and functionally relevant downstream response to trisomy 21 in human cells.

Journal ArticleDOI
01 Jan 2010-Leukemia
TL;DR: Results suggest that the expression of hsa-mir-125b-2 in ETV6/RUNX1 ALL provides survival advantage to growth inhibitory signals in a p53-independent manner.
Abstract: MicroRNAs (miRNAs) regulate the expression of multiple proteins in a dose-dependent manner. We hypothesized that increased expression of miRNAs encoded on chromosome 21 (chr 21) contribute to the leukemogenic function of trisomy 21. The levels of chr 21 miRNAs were quantified by qRT-PCR in four types of childhood acute lymphoblastic leukemia (ALL) characterized by either numerical (trisomy or tetrasomy) or structural abnormalities of chr 21. Suprisingly, high expression of the hsa-mir-125b-2 cluster, consisting of three miRNAs, was identified in leukemias with the structural ETV6/RUNX1 abnormality and not in ALLs with trisomy 21. Manipulation of ETV6/RUNX1 expression and chromatin immunoprecipitation studies showed that the high expression of the miRNA cluster is an event independent of the ETV6/RUNX1 fusion protein. Overexpression of hsa-mir-125b-2 conferred a survival advantage to Ba/F3 cells after IL-3 withdrawal or a broad spectrum of apoptotic stimuli through inhibition of caspase 3 activation. Conversely, knockdown of the endogenous miR-125b in the ETV6/RUNX1 leukemia cell line REH increased apoptosis after Doxorubicin and Staurosporine treatments. P53 protein levels were not altered by miR-125b. Together, these results suggest that the expression of hsa-mir-125b-2 in ETV6/RUNX1 ALL provides survival advantage to growth inhibitory signals in a p53-independent manner.

Journal ArticleDOI
TL;DR: The study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning, which has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.
Abstract: Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.

Journal ArticleDOI
01 Apr 2010-Heredity
TL;DR: The chromosomal organization of repetitive DNA sequences, as well as the presence and characteristics of a B chromosome in two natural populations of Dichotomius geminatus (Coleoptera; Scarabaeidae) are reported using classical, chromosomal banding and molecular cytogenetic techniques.
Abstract: Chromosomal banding techniques and repetitive DNA mapping are useful tools in comparative analysis and in the elucidation of genome organization of several groups of eukaryotes. In this study, we contributed to the knowledge of Coleoptera genomes by reporting the chromosomal organization of repetitive DNA sequences, as well as the presence and characteristics of a B chromosome in two natural populations of Dichotomius geminatus (Coleoptera; Scarabaeidae) using classical, chromosomal banding and molecular cytogenetic techniques. As in other coleopteran species, the heterochromatin was mainly concentrated in pericentromeric regions and the B chromosome was composed almost entirely of heterochromatin. Physical mapping using double fluorescent in situ hybridization was performed for the first time in Coleoptera; using DNA probes for 5S and 18S ribosomal RNA (rRNA) and histone H3 genes, we showed that ribosomal 18S rDNAs are located in chromosomes 3 and 4, whereas 5S rRNA and histone H3 genes are colocalized in chromosomal pair 2 and show an apparently interspersed organization. Moreover, these genes are not present in the B chromosome, suggesting that the B chromosome did not originate from chromosomal pairs 2, 3 or 4. On the other hand, mapping of the C(0)t-1 DNA fraction showed that the B chromosome is enriched in repetitive DNA elements, also present in the standard complement, indicating an intraspecific origin of this element in D. geminatus. These results will contribute to our understanding of genome organization and evolution of repetitive elements in Coleoptera and other insects regarding both A and B chromosomes.

Journal ArticleDOI
TL;DR: The findings suggest that the trisomic segment of the Ts1Cje mouse, which is shared with Ts2Cje, contains the genes that are responsible for these abnormal phenotypes and could be relevant to the mental retardation associated with DS.
Abstract: Down syndrome (DS) is the most common cause of mental retardation. Although structural and neurogenic abnormalities have been shown in the brains of DS patients, the molecular etiology is still unknown. To define it, we have performed structural and histological examinations of the brains of Ts1Cje and Ts2Cje, 2 mouse models for DS. These mice carry different length of trisomic segments of mouse chromosome 16 that are orthologous to human chromosome 21. At 3 months of age, ventricular enlargements were observed in both Ts1Cje and Ts2Cje brains at a similar degree. Both mice also showed decreases of the number of doublecortin-positive neuroblasts and thymidine-analog BrdU-labeled proliferating cells in the subventricular zone of the lateral ventricles (LVs) and in the hippocampal dentate gyrus at a similar degree, suggesting impaired adult neurogenesis. Additionally, at embryonic day 14.5, both strains of mice, when compared with diploid littermates, had smaller brains and decreased cortical neurogenesis that could possibly contribute to the ventricular enlargements observed in adulthood. Our findings suggest that the trisomic segment of the Ts1Cje mouse, which is shared with Ts2Cje, contains the genes that are responsible for these abnormal phenotypes and could be relevant to the mental retardation associated with DS.

Journal ArticleDOI
01 Dec 2010-Genetics
TL;DR: In this article, a set of 408 overlapping P[acman] BAC clones were used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome.
Abstract: We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

Journal ArticleDOI
TL;DR: Interestingly, some genes associated with X-linked mental retardation in humans show lethal phenotypes in mice, suggesting that null mutations cannot be responsible for all cases of XLMR, and has the potential to screen all of the genes on the X chromosome without establishing mutant animals.
Abstract: Mutational screens are an effective means used in the functional annotation of a genome. We present a method for a mutational screen of the mouse X chromosome using gene trap technologies. This method has the potential to screen all of the genes on the X chromosome without establishing mutant animals, as all gene-trapped embryonic stem (ES) cell lines are hemizygous null for mutations on the X chromosome. Based on this method, embryonic morphological phenotypes and expression patterns for 58 genes were assessed, approximately 10% of all human and mouse syntenic genes on the X chromosome. Of these, 17 are novel embryonic lethal mutations and nine are mutant mouse models of genes associated with genetic disease in humans, including BCOR and PORCN. The rate of lethal mutations is similar to previous mutagenic screens of the autosomes. Interestingly, some genes associated with X-linked mental retardation (XLMR) in humans show lethal phenotypes in mice, suggesting that null mutations cannot be responsible for all cases of XLMR. The entire data set is available via the publicly accessible website (http://xlinkedgenes.ibme.utoronto.ca/).

Journal ArticleDOI
TL;DR: Strong evidence for B chromosome ancestry in the migratory locust is provided, based on the location of genes for the H3 and H4 histones in the B chromosome and a single A chromosome pair, showing the B-chromosome ability to persist in natural populations for long periods of time.
Abstract: In addition to the standard set of chromosomes (A), about 15% of eukaryote genomes carry B chromosomes. In most cases, B chromosomes behave as genomic parasites being detrimental for the individuals carrying them and prospering in natural populations because of transmission advantages (drive). B chromosomes are mostly made up of repetitive DNA sequences, especially ribosomal DNA (rDNA), satellite DNA and mobile elements. In only two cases have B chromosomes been shown to carry protein-coding genes. Although some B chromosomes seem to have derived from interspecific hybridisation, the most likely source of B chromosomes is the host genome itself, but the specific A chromosome being the B ancestor has not been identified in any B-containing species. Here, we provide strong evidence for B chromosome ancestry in the migratory locust, based on the location of genes for the H3 and H4 histones in the B chromosome and a single A chromosome pair (i.e. the eighth in order of decreasing size). The high DNA sequence similarity of A and B chromosome H3–H4 genes supports B-origin from chromosome 8. The higher variation shown by B sequences, compared to A sequences, suggests that B chromosome sequences are most likely inactive and thus less subjected to purifying selection. Estimates of time of divergence for histone genes from A and B chromosomes suggest that B chromosomes are quite old (>750,000 years), showing the B-chromosome ability to persist in natural populations for long periods of time.

Journal ArticleDOI
TL;DR: It is proposed that Ts21 gene dosage over-expression of Hsa21-derived miRNAs in DS individuals result in the decreased expression of specific target proteins (i.e. haploinsufficiency) that contribute, in part, to the DS phenotype.
Abstract: Down syndrome (DS) or Trisomy 21 (Ts21) is caused by the presence of an extra copy of all or part of human chromosome 21 (Hsa21) and is the most frequent survivable congenital chromosomal abnormality. Bioinformatic annotation has established that Hsa21 harbors more than 400 genes, including five microRNA (miRNA) genes (miR-99a, let-7c, miR-125b-2, miR-155, and miR-802). MiRNAs are endogenous, single-stranded, small non-coding RNA molecules that regulate gene expression by interacting with specific recognition elements harbored within the 3'-untranslated region (3'-UTR) of mRNAs and subsequently target these mRNAs for translational repression or destabilization. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments have demonstrated that Hsa21-derived miRNAs were over-expressed in fetal brain and heart specimens isolated from individuals with DS. We now propose that Ts21 gene dosage over-expression of Hsa21-derived miRNAs in DS individuals result in the decreased expression of specific target proteins (i.e. haploinsufficiency) that contribute, in part, to the DS phenotype.

Journal ArticleDOI
TL;DR: For prenatal screening of trisomy 21, the quantification of the total PLAC4 mRNA concentration can be used in a synergistic manner with the RNA-SNP allelic ratio approach to increase the population coverage of cases in which diagnostic information can be obtained.
Abstract: BACKGROUND: Maternal plasma mRNA encoded by the PLAC4 gene (placenta-specific 4), which is transcribed from chromosome 21 in placental cells, is a potential marker for the noninvasive assessment of chromosome 21 dosage in the fetus. We evaluated the diagnostic sensitivities and specificities of 2 trisomy 21-screening approaches that use maternal plasma PLAC4 mRNA. METHODS: We studied maternal plasma samples from 153 pregnant women carrying euploid and trisomy 21 fetuses. For the samples in which the fetuses were heterozygous for the studied PLAC4 single-nucleotide polymorphism (SNP), we measured the ratio between 2 alleles of the SNP in maternal plasma PLAC4 mRNA (RNA-SNP) by mass spectrometric (MS) and digital PCR methods. For pregnancies involving fetuses homozygous for the SNP, we quantified the total PLAC4 mRNA concentration in maternal plasma by real-time PCR and digital PCR. RESULTS: For the RNA-SNP approach, we achieved a diagnostic sensitivity and specificity of 100% (95% CI, 40.2%-100%) and 89.7% (95% CI, 78.8%-96.1%), respectively, for both the MS and the digital PCR methods. For the mRNA-quantification approach, the areas under the ROC curves were 0.859 (95% CI, 0.741-0.903) and 0.833 (95% CI, 0.770-0.923) for plasma PLAC4 mRNA concentrations measured by the real-time PCR and the digital PCR methods, respectively. CONCLUSIONS: For prenatal screening of trisomy 21, the quantification of the total PLAC4 mRNA concentration can be used in a synergistic manner with the RNA-SNP allelic ratio approach to increase the population coverage of cases in which diagnostic information can be obtained.

Journal ArticleDOI
01 Nov 2010-PLOS ONE
TL;DR: This work used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A and used the resulting sequence assembly to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes.
Abstract: Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.

Journal ArticleDOI
10 Jun 2010-Blood
TL;DR: It is found that the RFC AA variant was associated with a 50% better chance of staying in remission compared with GG or GA variants, and increased copy numbers of chromosome 21 appear to improve outcome also in children with GA or GG variant.

Journal ArticleDOI
08 Apr 2010-Blood
TL;DR: It is shown that although Tc1 mice do not develop leukemia, they have macrocytic anemia and increased extramedullary hematopoiesis, and it is demonstrated that GATA1s and trisomy of approximately 80% of Hsa21 perturb megakaryopoiedis but are insufficient to induce leukemia.


Journal ArticleDOI
TL;DR: A loss of Y-linked genes with important male functions to be necessary for the Y chromosome to disappear is indicated and might have been retained through the acquisition of new genes, and therefore, the Y-loss has had no harmful effect on the maintenance of this species.
Abstract: The Ryukyu spiny rat, Tokudaia osimensis, has an XO/XO sex chromosome constitution, lacking a Y chromosome and the mammalian sex-determining gene SRY. To investigate the Y-loss event, we traced three proto-Y-linked genes, RBMY1A1, EIF2S3Y, and KDM5D, in the genome. The original Y-linked RBMY1A1 was lost as well as SRY, and the remaining RBMY1A1 was a processed pseudogene on autosome. In contrast, EIF2S3Y and KDM5D were conserved in genomes of both sexes as a result of their translocation from the Y chromosome to the X chromosome and/or autosomes. Furthermore, these genes were expressed in gonads and brains of both sexes. Our study indicated a loss of Y-linked genes with important male functions to be necessary for the Y chromosome to disappear. These functions might have been retained through the acquisition of new genes, and therefore, the Y-loss has had no harmful effect on the maintenance of this species.

Journal ArticleDOI
TL;DR: The Tc1 mouse line provides a suitable model for studying the underlying genetic causes of the DS AVSD cardiac phenotype, and exhibits many of the cardiac defects found in DS, including balanced AVSD with single and separate valvar orifices, membranous and muscular ventricular septal defects along with outflow tract and valve leaflet abnormalities.
Abstract: Aims Cardiac malformations are prevalent in trisomies of human chromosome 21 [Down's syndrome (DS)], affecting normal chamber separation in the developing heart. Efforts to understand the aetiology of these defects have been severely hampered by the absence of an accurate mouse model. Such models have proved challenging to establish because synteny with human chromosome Hsa21 is distributed across three mouse chromosomes. None of those engineered so far accurately models the full range of DS cardiac phenotypes, in particular the profound disruptions resulting from atrioventricular septal defects (AVSDs). Here, we present analysis of the cardiac malformations exhibited by embryos of the transchromosomic mouse line Tc(Hsa21)1TybEmcf (Tc1) which contains more than 90% of chromosome Hsa21 in addition to the normal diploid mouse genome. Methods and results Using high-resolution episcopic microscopy and three-dimensional (3D) modelling, we show that Tc1 embryos exhibit many of the cardiac defects found in DS, including balanced AVSD with single and separate valvar orifices, membranous and muscular ventricular septal defects along with outflow tract and valve leaflet abnormalities. Frequencies of cardiac malformations (ranging from 38 to 55%) are dependent on strain background. In contrast, no comparable cardiac defects were detected in embryos of the more limited mouse trisomy model, Dp(16Cbr1-ORF9)1Rhr (Ts1Rhr), indicating that trisomy of the region syntenic to the Down's syndrome critical region, including the candidate genes DSCAM and DYRK1A, is insufficient to yield DS cardiac abnormalities. Conclusion The Tc1 mouse line provides a suitable model for studying the underlying genetic causes of the DS AVSD cardiac phenotype.

Journal ArticleDOI
08 Oct 2010-PLOS ONE
TL;DR: A targeted approach, based on calculation of Haplotype Ratios from tandem SNP sequences combined with a sensitive and quantitative DNA measurement technology can be used to accurately detect fetal T21 in maternal plasma when sufficient fetal DNA is present in maternal Plasma.
Abstract: Background: Screening tests for Trisomy 21 (T21), also known as Down syndrome, are routinely performed for the majority of pregnant women. However, current tests rely on either evaluating non-specific markers, which lead to false negative and false positive results, or on invasive tests, which while highly accurate, are expensive and carry a risk of fetal loss. We outline a novel, rapid, highly sensitive, and targeted approach to non-invasively detect fetal T21 using maternal plasma DNA. Methods and Findings: Highly heterozygous tandem Single Nucleotide Polymorphism (SNP) sequences on chromosome 21 were analyzed using High-Fidelity PCR and Cycling Temperature Capillary Electrophoresis (CTCE). This approach was used to blindly analyze plasma DNA obtained from peripheral blood from 40 high risk pregnant women, in adherence to a Medical College of Wisconsin Institutional Review Board approved protocol. Tandem SNP sequences were informative when the mother was heterozygous and a third paternal haplotype was present, permitting a quantitative comparison between the maternally inherited haplotype and the paternally inherited haplotype to infer fetal chromosomal dosage by calculating a Haplotype Ratio (HR). 27 subjects were assessable; 13 subjects were not informative due to either low DNA yield or were not informative at the tandem SNP sequences examined. All results were confirmed by a procedure (amniocentesis/CVS) or at postnatal follow-up. Twenty subjects were identified as carrying a disomy 21 fetus (with two copies of chromosome 21) and seven subjects were identified as carrying a T21 fetus. The sensitivity and the specificity of the assay was 100% when HR values lying between 3/5 and 5/3 were used as a threshold for normal subjects. Conclusions: In summary, a targeted approach, based on calculation of Haplotype Ratios from tandem SNP sequences combined with a sensitive and quantitative DNA measurement technology can be used to accurately detect fetal T21 in maternal plasma when sufficient fetal DNA is present in maternal plasma.