scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
TL;DR: This work examined two extended histopathologically confirmed EOAD pedigrees, AD/A and AD/B, with highly informative short tandem repeat (STR) polymorphisms and found complete linkage of the disease to a (CA)n dinucleotide repeat polymorphism at locus D14S43 in 14q24.3.
Abstract: Genetic linkage studies with chromosome 21 DNA markers and mutation analysis of the beta-amyloid protein precursor gene located in 21q21.3 have indicated that early-onset Alzheimer's disease (EOAD) is a heterogeneous disorder for which at least one other chromosomal locus exists. We examined two extended histopathologically confirmed EOAD pedigrees, AD/A and AD/B, with highly informative short tandem repeat (STR) polymorphisms and found complete linkage of the disease to a (CA)n dinucleotide repeat polymorphism at locus D14S43 in 14q24.3 (Zmax = 13.25 at theta = 0.0). Using additional chromosome 14 STR polymorphisms we were able to delineate the region containing the EOAD gene to an area of, at most, 8.9 centiMorgans between D14S42 and D14S53, flanking D14S43 on both sides.

351 citations

Journal ArticleDOI
01 Jan 1985-Nature
TL;DR: In this article, the authors used rRNA sequences as probes to clone the region spanning the translocation breakpoint, which was then used to detect a restriction fragment length polymorphism (RFLP) which was closely linked to the DMD gene and uncovers chromosomal deletions in some male DMD patients.
Abstract: Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder which affects approximately 1 in 3,300 males, making it the most common of the neuromuscular dystrophies (see ref. 1 for review). The biochemical basis of the disease is unknown and as yet no effective treatment is available. A small number of females are also affected with the disease, and these have been found to carry X;autosome translocations2,3 involving variable autosomal sites but always with a breakpoint within band Xp21 of the X chromosome (implicated by other kinds of genetic evidence as the site of the DMD lesion4–6. In these female patients the normal X chromosome is preferentially inactivated, which it is assumed silences their one normal DMD gene, leading to expression of the disease. In one such affected female the autosomal breakpoint lies in the middle of the short arm of chromosome 21 (ref. 2), within a cluster of ribosomal RNA genes7. Here we have used rRNA sequences as probes to clone the region spanning the translocation breakpoint. A sequence derived from the X-chromosomal portion of the clone detects a restriction fragment length polymorphism (RFLP) which is closely linked to the DMD gene and uncovers chromosomal deletions in some male DMD patients.

351 citations

Journal ArticleDOI
TL;DR: The locus cloned in cosmids c8.1 and c29B is the relic of an ancient telomere-telomere fusion and marks the point at which two ancestral ape chromosomes fused to give rise to human chromosome 2.
Abstract: We have identified two allelic genomic cosmids from human chromosome 2, c8.1 and c29B, each containing two inverted arrays of the vertebrate telomeric repeat in a head-to-head arrangement, 5'(TTAGGG)n-(CCCTAA)m3'. Sequences flanking this telomeric repeat are characteristic of present-day human pretelomeres. BAL-31 nuclease experiments with yeast artificial chromosome clones of human telomeres and fluorescence in situ hybridization reveal that sequences flanking these inverted repeats hybridize both to band 2q13 and to different, but overlapping, subsets of human chromosome ends. We conclude that the locus cloned in cosmids c8.1 and c29B is the relic of an ancient telomere-telomere fusion and marks the point at which two ancestral ape chromosomes fused to give rise to human chromosome 2.

348 citations

Journal ArticleDOI
TL;DR: It is demonstrated by quantitative fluorescence in situ hybridization that the number of T2AG3 repeats on specific chromosome arms is very similar in different tissues from the same donor and varies only to some extent between donors, raising the possibility that the relatively short telomeres on chromosome 17p contribute to the frequent loss of 17p alleles in human cancers.
Abstract: Human chromosomes terminate in a series of T2AG3 repeats, which, together with associated proteins, are essential for chromosome stability. In somatic cells, these sequences are known to be gradually lost through successive cells divisions; however, information about changes on specific chromosomes is not available. Individual telomeres could mediate important biological effects as was shown in yeast, in which loss of a single telomere results in cell-cycle arrest and chromosome loss. We now demonstrate by quantitative fluorescence in situ hybridization (Q-FISH; ref. 7) that the number of T2AG3 repeats on specific chromosome arms is very similar in different tissues from the same donor and varies only to some extent between donors. In all sixteen individuals studied, telomeres on chromosome 17p were shorter than the median telomere length--a finding confirmed by analysis of terminal restriction fragments from sorted chromosomes. These observations provide evidence of chromosome-specific factors regulating the number of T2AG3 repeats in individual telomeres and raise the possibility that the relatively short telomeres on chromosome 17p contribute to the frequent loss of 17p alleles in human cancers.

345 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858