scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
01 Sep 1997-Genomics
TL;DR: Isolation, mapping, and sequencing of trapped exons and captured cDNAs from cosmids of this region have revealed the presence of a gene (KCNJ15) encoding a potassium (K+) channel belonging to the family of inward rectifier K+ (Kir) channels.

53 citations

Journal ArticleDOI
TL;DR: The abnormalities found in human Down syndrome (trisomy 21) have been thought to result from increased expression of genes on chromosome 21 because of their higher gene dosage, but some inter-individual variability and other exceptions were found.
Abstract: The abnormalities found in human Down syndrome (trisomy 21) have been thought to result from increased expression of genes on chromosome 21 because of their higher gene dosage. Now, several groups have shown this to be generally the case, but some inter-individual variability and other exceptions were found.

53 citations

Journal Article
TL;DR: The fine structural features of human spermatocytes from carriers of some of the most frequent chromosomal abnormalities are reviewed on the basis of original data and previous reports from the literature, and renewed interest in the examination of sperMatocytes from human testicular biopsies is commented upon.
Abstract: The fine structural features of human spermatocytes from carriers of some of the most frequent chromosomal abnormalities are reviewed on the basis of original data and previous reports from the literature. Special emphasis is given to the Robert-sonian translocations t (13; 14), to one specific reciprocal translocation involving chromosome 21, and to Y disomy in spermatocytes from XYY men. Synaptonemal complex analysis shows that in many carriers of chromosomal aberrations that lead to pachytene configurations having terminal asynaptic segments in autosomes, there is a gradual association of these asynaptic segments with the XY body. This associations with the XY pair is assumed to trigger a process of germ cell deterioration, presumably through the spreading of the X-chromosome inactivation towards autosomal segments. Another different process of germ cell deterioration occurs when the X chromosome becomes an univalent, as in XYY men with persistence of two Y chromosomes in the germ line. The renewed interest in the examination of spermatocytes from human testicular biopsies is commented upon.

53 citations

Journal ArticleDOI
01 Sep 1984-Genetics
TL;DR: In this article, a method was developed for isolating large numbers of mutations on chromosome I of the yeast Saccharomyces cerevisiae, which proved to be the previously described genes CDC15, CDC24 and PYK1 (or CDC19).
Abstract: A method was developed for isolating large numbers of mutations on chromosome I of the yeast Saccharomyces cerevisiae. A strain monosomic for chromosome I (i.e., haploid for chromosome I and diploid for all other chromosomes) was mutagenized with either ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine and screened for temperature-sensitive (Ts-) mutants capable of growth on rich, glucose-containing medium at 25 degrees but not at 37 degrees. Recessive mutations induced on chromosome I are expressed whereas those on the diploid chromosomes are usually not expressed because of the presence of wild-type alleles on the homologous chromosomes. Dominant ts mutations on all chromosomes should also be expressed, but these appeared rarely.--Of the 41 ts mutations analyzed, 32 mapped on chromosome I. These 32 mutations fell into only three complementation groups, which proved to be the previously described genes CDC15, CDC24 and PYK1 (or CDC19). We recovered 16 or 17 independent mutations in CDC15, 12 independent mutations in CDC24 and three independent mutations in PYK1. A fourth gene on chromosome I, MAK16, is known to be capable of giving rise to a ts-lethal allele, but we recovered no mutations in this gene. The remaining nine mutations isolated using the monosomic strain appeared not to map on chromosome I and were apparently expressed in the original mutants because they had become homozygous or hemizygous by mitotic recombination or chromosome loss.--The available information about the size of chromosome I suggests that it should contain approximately 60-100 genes. However, our isolation in the monosomic strain of multiple, independent alleles of just three genes suggests that only a small proportion of the genes on chromosome I is easily mutable to give a Ts--lethal phenotype.--During these studies, we located CDC24 on chromosome I and determined that it is centromere distal to PYK1 on the left arm of the chromosome.

53 citations

Journal ArticleDOI
TL;DR: This article critically reviews the hypotheses and the risk factors which have been suggested to contribute to the birth of a child with DS, including folate metabolism, dietary, lifestyle, environmental, occupational, genetic and epigenetic factors, taking into account the possible contribution of the maternal grandmother and that of the developing trisomic embryo.
Abstract: Down syndrome (DS) originates, in most of the cases (95 %), from a full trisomy of chromosome 21. The remaining cases are due to either mosaicism for chromosome 21 or the inheritance of a structural rearrangement leading to partial trisomy of the majority of its content. Full trisomy 21 and mosaicism are not inherited, but originate from errors in cell divisions during the development of the egg, sperm or embryo. In addition, full trisomy for chromosome 21 should be further divided into cases of maternal origin, the majority, and cases of paternal origin, less than 10 %. Among cases of maternal origin, a further stratification should be performed into errors that have occurred or originated during the first meiotic division in the maternal grandmother’s body and errors that occurred later in life during the second maternal meiotic division. This complex scenario suggests that our understanding of the risk factors for trisomy 21 should take into account the above stratification as it reflects different individuals and generations in which the first error has occurred. Unfortunately, most of the available literature is focused on maternal risk factors, and the only certain risk factors for the birth of a child with DS are advanced maternal age at conception and recombination errors, even though the molecular mechanisms leading to chromosome 21 nondisjunction are still a matter of debate. This article critically reviews the hypotheses and the risk factors which have been suggested to contribute to the birth of a child with DS, including folate metabolism, dietary, lifestyle, environmental, occupational, genetic and epigenetic factors, with focus on maternal and paternal risk factors, and taking into account the possible contribution of the maternal grandmother and that of the developing trisomic embryo, in a complex scenario depicting the birth of a child with DS as the result of complex gene–environment interactions and selection processes involving different generations.

53 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858