scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
16 Dec 2004-Nature
TL;DR: It is demonstrated that platypus has five male-specific chromosomes and five chromosomes present in one copy in males and two copies in females that form a multivalent chain at male meiosis, suggesting an evolutionary link between mammal and bird sex chromosome systems, which were previously thought to have evolved independently.
Abstract: Two centuries after the duck-billed platypus was discovered, monotreme chromosome systems remain deeply puzzling. Karyotypes of males, or of both sexes, were claimed to contain several unpaired chromosomes (including the X chromosome) that form a multi-chromosomal chain at meiosis. Such meiotic chains exist in plants and insects but are rare in vertebrates. How the platypus chromosome system works to determine sex and produce balanced gametes has been controversial for decades. Here we demonstrate that platypus have five male-specific chromosomes (Y chromosomes) and five chromosomes present in one copy in males and two copies in females (X chromosomes). These ten chromosomes form a multivalent chain at male meiosis, adopting an alternating pattern to segregate into XXXXX-bearing and YYYYY-bearing sperm. Which, if any, of these sex chromosomes bears one or more sex-determining genes remains unknown. The largest X chromosome, with homology to the human X chromosome, lies at one end of the chain, and a chromosome with homology to the bird Z chromosome lies near the other end. This suggests an evolutionary link between mammal and bird sex chromosome systems, which were previously thought to have evolved independently.

259 citations

Journal ArticleDOI
TL;DR: The analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization, including several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy.
Abstract: In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.

259 citations

Journal ArticleDOI
TL;DR: A family of repeated restriction fragments whose molecular organization is apparently specific to the human X chromosome is identified and characterization and it is estimated that there are 5,000-7,500 copies of the 2.0 kb BamHI repeat per haploid genome.
Abstract: We report the identification and characterization of a family of repeated restriction fragments whose molecular organization is apparently specific to the human X chromosome. This fragment, identified as an ethidium bromide-staining 2.0 kilobase (kb) band in BamHI-digested DNA from a Chinese hamster-human somatic cell hybrid containing a human X chromosome, has been cloned into pBR325 and characterized. The 2.0 kb repeated family has been assigned to the Xp11 leads to Xq12 region on the X by Southern blot analysis of somatic cell hybrids and is predominantly arranged in tandem clusters of up to seven 2.0 kb monomers. Homologous DNA sequences, not organized as 2.0 kb BamHI fragments, are found elsewhere on the X chromosome and on at least some autosomes, but are not found on the Y chromosome. From a dosing experiment using various amounts of the cloned repeat, we estimate that there are 5,000-7,500 copies of the 2.0 kb BamHI repeat per haploid genome. Since the vast majority, if not all, of these are confined to the X chromosome, this repeated DNA family must account for 5-10% of all X chromosome DNA and must constitute the major sequence component of the pericentromeric region of the X.

258 citations

Journal ArticleDOI
11 Mar 1994-Cell
TL;DR: It is confirmed that an additional factor encoded on human chromosome 21 is required for reconstitution of antiviral activity against EMCV, and that this accessory factor belongs to a family of such accessory factors responsible for different actions of IFN-γ.

257 citations

Journal ArticleDOI
TL;DR: This work scans throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) and indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.
Abstract: We scanned throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) using 374 Japanese patients and 375 population-based controls, because trisomy 21 is known to be associated with early deposition of beta-amyloid (Abeta) in the brain. Among 417 markers spanning 33 Mb, 22 markers showed associations with either the allele or the genotype frequency (P < 0.05). Logistic regression analysis with age, sex and apolipoprotein E (APOE)-epsilon4 dose supported genetic risk of 17 markers, of which eight markers were linked to the SAMSN1, PRSS7, NCAM2, RUNX1, DYRK1A and KCNJ6 genes. In logistic regression, the DYRK1A (dual-specificity tyrosine-regulated kinase 1A) gene, located in the Down syndrome critical region, showed the highest significance [OR = 2.99 (95% CI: 1.72-5.19), P = 0.001], whereas the RUNX1 gene showed a high odds ratio [OR = 23.3 (95% CI: 2.76-196.5), P = 0.038]. DYRK1A mRNA level in the hippocampus was significantly elevated in patients with AD when compared with pathological controls (P < 0.01). DYRK1A mRNA level was upregulated along with an increase in the Abeta-level in the brain of transgenic mice, overproducing Abeta at 9 months of age. In neuroblastoma cells, Abeta induced an increase in the DYRK1A transcript, which also led to tau phosphorylation at Thr212 under the overexpression of tau. Therefore, the upregulation of DYRK1A transcription results from Abeta loading, further leading to tau phosphorylation. Our result indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.

256 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858