scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that R. sphaeroides 2.4.1 carries two different circular chromosomes of 3,046 +/- 95 and 914 +/- 17 kilobases (kb), and it appears that only a single copy of the rRNA genes is contained on chromosome I and that two copies are present on chromosome II.
Abstract: A macrorestriction map representing the complete physical map of the Rhodobacter sphaeroides 2.4.1 chromosomes has been constructed by ordering the chromosomal DNA fragments from total genomic DNA digested with the restriction endonucleases AseI, SpeI, DraI, and SnaBI. Junction fragments and multiple restriction endonuclease digestions of the chromosomal DNAs derived from wild-type and various mutant strains, in conjunction with Southern hybridization analysis, have been used to order all of the chromosomal DNA fragments. Our results indicate that R. sphaeroides 2.4.1 carries two different circular chromosomes of 3,046 +/- 95 and 914 +/- 17 kilobases (kb). Both chromosome I (3,046 kb) and chromosome II (914 kb) contain rRNA cistrons. It appears that only a single copy of the rRNA genes is contained on chromosome I (rrnA) and that two copies are present on chromosome II (rrnB, rrnC). Additionally, genes for glyceraldehyde 3-phosphate dehydrogenase (gapB) and delta-aminolevulinic acid synthase (hemT) are found on chromosome II. In each instance, there appears to be a second copy of each of these genes on chromosome I, but the extent of the DNA homology is very low. Genes giving rise to enzymes involved in CO2 fixation and linked to the gene encoding the form I enzyme (i.e., the form I region) are on chromosome I, whereas those genes representing the form II region are on chromosome II. The complete physical and partial genetic maps for each chromosome are presented.

236 citations

Journal ArticleDOI
TL;DR: Complex rearrangements are present in a broad spectrum of tumors and in individuals with congenital or developmental defects, highlighting the impact of chromoanagenesis on human disease.
Abstract: Next-generation sequencing of DNA from human tumors or individuals with developmental abnormalities has led to the discovery of a process we term chromoanagenesis, in which large numbers of complex rearrangements occur at one or a few chromosomal loci in a single catastrophic event. Two mechanisms underlie these rearrangements, both of which can be facilitated by a mitotic chromosome segregation error to produce a micronucleus containing the chromosome to undergo rearrangement. In the first, chromosome shattering (chromothripsis) is produced by mitotic entry before completion of DNA replication within the micronucleus, with a failure to disassemble the micronuclear envelope encapsulating the chromosomal fragments for random reassembly in the subsequent interphase. Alternatively, locally defective DNA replication initiates serial, microhomology-mediated template switching (chromoanasynthesis) that produces local rearrangements with altered gene copy numbers. Complex rearrangements are present in a broad spectrum of tumors and in individuals with congenital or developmental defects, highlighting the impact of chromoanagenesis on human disease.

235 citations

Journal ArticleDOI
03 Apr 2014-Nature
TL;DR: It is shown that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population.
Abstract: Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms1. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21)2, 3. We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

232 citations

Journal ArticleDOI
01 Jun 1998-Blood
TL;DR: The t(16;21)(q24;q22) translocation is a rare but recurrent chromosomal abnormality associated with therapy-related myeloid malignancies and a variant of the t(8;21) translocations in which the AML1 gene on chromosome 21 is rearranged.

232 citations

Journal ArticleDOI
TL;DR: The compromised microcirculation hypothesis explains the occurrence of aneuploidy in primary and secondary oocytes, sperm precursor cells, tumor and embryonic cells, and explains why women of all reproductive ages may have a Down syndrome child.
Abstract: Aneuploidy is the most frequently observed chromosome abnormality in human liveborn, abortuses and oocytes. The only etiological factor that has been established is advanced maternal age for the occurrence of trisomies, particularly trisomy 21 which causes Down syndrome. The maternal age effect remains an enigma. Recent molecular data bearing on this question are reviewed as are the hypotheses that have been proposed linking nondisjunction and maternal age. Rationale is presented for a compromised microcirculation hypothesis that explains the cause of nondisjunction and why its occurrence changes with maternal age from menarche to menopause. It takes into account two facts: (1) 95% of Down syndrome children receive their extra chromosome from their mother, and in 80% or more of these the nondisjunction occurred in the first meiotic division, which is completed in the ovary. (2) The ovarian follicle containing the primary oocyte has no internal circulation. The hypothesis proposes that aneuploid oocytes arise from a concatenation of events. It begins with hormonal imbalance that causes a less-than-optimal microvasculature to develop around the maturing and mature follicles. The resulting decrease in the size of the perifollicular capillary bed reduces the volume of blood flow through the area, leading to an oxygen deficit and a concomitant increase inside the follicle of carbon dioxide and anaerobic products, such as lactic acid. This in turn causes a decrease in the intracellular pH of the oocyte that diminishes the size of the spindle, with consequent displacement and nondisjunction of a chromosome. The compromised microcirculation hypothesis explains the occurrence of aneuploidy in primary and secondary oocytes, sperm precursor cells, tumor and embryonic cells. It also explains why women of all reproductive ages may have a Down syndrome child.

230 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858