scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
23 Nov 2001-Science
TL;DR: High-density oligonucleotide arrays are used in combination with somatic cell genetics to identify a large fraction of all common human chromosome 21 SNPs and to directly observe the haplotype structure defined by these SNPs.
Abstract: Global patterns of human DNA sequence variation (haplotypes) defined by common single nucleotide polymorphisms (SNPs) have important implications for identifying disease associations and human traits We have used high-density oligonucleotide arrays, in combination with somatic cell genetics, to identify a large fraction of all common human chromosome 21 SNPs and to directly observe the haplotype structure defined by these SNPs This structure reveals blocks of limited haplotype diversity in which more than 80% of a global human sample can typically be characterized by only three common haplotypes

1,183 citations

Journal ArticleDOI
20 Feb 1987-Science
TL;DR: The chromosomal location of this defective gene has been discovered by using genetic linkage to DNA markers on chromosome 21 and provides an explanation for the occurrence of Alzheimer's disease-like pathology in Down syndrome.
Abstract: Alzheimer's disease is a leading cause of morbidity and mortality among the elderly. Several families have been described in which Alzheimer's disease is caused by an autosomal dominant gene defect. The chromosomal location of this defective gene has been discovered by using genetic linkage to DNA markers on chromosome 21. The localization on chromosome 21 provides an explanation for the occurrence of Alzheimer's disease-like pathology in Down syndrome. Isolation and characterization of the gene at this locus may yield new insights into the nature of the defect causing familial Alzheimer's disease and possibly, into the etiology of all forms of Alzheimer's disease.

1,158 citations

Journal ArticleDOI
TL;DR: The finding of a recent common ancestor (probably in the last 120,000 years), coupled with a strong signal of demographic expansion in all populations, suggests either a recent human expansion from a small ancestral population, or natural selection acting on the Y chromosome.
Abstract: We use variation at a set of eight human Y chromosome microsatellite loci to investigate the demographic history of the Y chromosome. Instead of assuming a population of constant size, as in most of the previous work on the Y chromosome, we consider a model which permits a period of recent population growth. We show that for most of the populations in our sample this model fits the data far better than a model with no growth. We estimate the demographic parameters of this model for each population and also the time to the most recent common ancestor. Since there is some uncertainty about the details of the microsatellite mutation process, we consider several plausible mutation schemes and estimate the variance in mutation size simultaneously with the demographic parameters of interest. Our finding of a recent common ancestor (probably in the last 120,000 years), coupled with a strong signal of demographic expansion in all populations, suggests either a recent human expansion from a small ancestral population, or natural selection acting on the Y chromosome.

1,135 citations

Journal ArticleDOI
Mark T. Ross1, Darren Grafham1, Alison J. Coffey1, Steven E. Scherer2  +279 moreInstitutions (15)
17 Mar 2005-Nature
TL;DR: This analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome.
Abstract: The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

1,102 citations

Journal ArticleDOI
15 Jul 1983-Science
TL;DR: It is proposed that chromosomal rearrangements play a central role in human neoplasia and may exert their effects through related genomic mechanisms and a translocation could serve to place an oncogene next to an activating DNA sequence, a deletion to eliminate anOncogene repressor, and trisomy to carry extra gene dosage.
Abstract: High-resolution banding techniques for the study of human chromosomes have revealed that the malignant cells of most tumors analyzed have characteristic chromosomal defects. Translocations of the same chromosome segments with precise breakpoints occur in many leukemias and lymphomas, and a specific chromosome band is deleted in several carcinomas. Trisomy, or the occurrence of a particular chromosome in triplicate, is the only abnormality observed in a few neoplasias. It is proposed that chromosomal rearrangements play a central role in human neoplasia and may exert their effects through related genomic mechanisms. Thus, a translocation could serve to place an oncogene next to an activating DNA sequence, a deletion to eliminate an oncogene repressor, and trisomy to carry extra gene dosage.

1,061 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858