scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
TL;DR: In a mouse/human hybrid line that contains chromosome 21 as the only human chromosome, the two human SOD-1 RNAs were detected, indicating that both are encoded by this chromosome.
Abstract: Cytoplasmic superoxide dismutase (SOD-1; EC 1.15.1.1) is encoded by human chromosome 21. The SOD-1 gene locus is located at chromosomal region 21q22, which is involved in Down syndrome. cDNA clones containing sequences of human SOD-1 were previously isolated. In the present study the nucleotide sequence of one clone, designated pS61-10, was determined. It contains 459 nucleotides representing the entire coding region and 95 nucleotides of the 3' untranslated region. In human cells two poly(A)-containing SOD-1 RNAs of 0.7 and 0.5 kilobases were detected. These two species are also present in monkey cells, whereas mouse cells contain only a 0.5-kilobase RNA. In a mouse/human hybrid line that contains chromosome 21 as the only human chromosome, the two human SOD-1 RNAs were detected, indicating that both are encoded by this chromosome. These RNAs were found in poly(A)-containing polysomal RNA and were translated in vitro to SOD-1 polypeptide; they are therefore functional mRNAs. In normal human fibroblasts 0.002-0.006% of the poly(A)-containing RNA was SOD-1 RNA. The level in monosomic 21 cells was 70% of this value and the level in fibroblasts from Down syndrome patients was about 2 times higher than normal.

188 citations

Journal ArticleDOI
TL;DR: The results suggest that the aberration of chromosome 3 is the first cytogenetic event in the clonal evolution of RCCs, and the loss of 3p13‐pter segment is an acquired, consistent chromosomal aberration which marks human R CCs.
Abstract: Using G-banding technique, the chromosomes were studied in short-term cultures of 25 primary renal-cell carcinomas (RCC). Phytohaemagglutinin-stimulated peripheral blood lymphocytes or normal kidney cells of the same patients growing in primary cultures were analysed to define the constitutional karyotype. The modal chromosome number of 23 RCC's was found to be pseudo-diploid or near-diploid with only few structural rearrangements, 22 of the RCC's showed an aberration of chromosome 3, deletion of 3p, or translocation of different chromosome segments to the deleted chromosome 3, leading to the loss of variable segments of chromosome 3. The break-points in rearrangements of chromosome 3 clustered in the region 3p11.2-p13. Shortest-region overlap analysis localized a consistent change to a small area of 3p13-pter. In 8 of the 25 RCCs, the rearrangement of chromosome 3 was the only karyotype change determined, and 4 other tumours had only one chromosomal rearrangement in addition to the aberration of chromosome 3. These results suggest that the aberration of chromosome 3 is the first cytogenetic event in the clonal evolution of RCCs. Translocation 3;5 was preferentially involved in the rearrangements between chromosome 3p and other chromosomes. The breakpoint on chromosome 3 was constant at p13, but the breaks on chromosome 5 varied between bands q11.2 and q22. Monosomy 14 was observed in 10 cases and loss of Y chromosome was detected in 6 of 14 tumours obtained from male patients. Since the normal somatic cells were free of chromosomal aberrations, one may conclude that the loss of 3p13-pter segment is an acquired, consistent chromosomal aberration which marks human RCCs.

187 citations

Journal ArticleDOI
15 Sep 1997-Genomics
TL;DR: The genomic organization of DSCR1 is determined and three additional alternative first exons are identified by RACE and cDNA library screening and Structural features of the conceptual protein encourage us to propose involvement of D SCR1 in the regulation of transcription and/or signal transduction.

186 citations

Journal ArticleDOI
TL;DR: The results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias.
Abstract: Individuals with Down syndrome (DS) are predisposed to develop acute megakaryoblastic leukemia (AMKL), characterized by expression of truncated GATA1 transcription factor protein (GATA1s) due to somatic mutation. The treatment outcome for DS-AMKL is more favorable than for AMKL in non-DS patients. To gain insight into gene expression differences in AMKL, we compared 24 DS and 39 non-DS AMKL samples. We found that non-DS-AMKL samples cluster in two groups, characterized by differences in expression of HOX/TALE family members. Both of these groups are distinct from DS-AMKL, independent of chromosome 21 gene expression. To explore alterations of the GATA1 transcriptome, we used cross-species comparison with genes regulated by GATA1 expression in murine erythroid precursors. Genes repressed after GATA1 induction in the murine system, most notably GATA-2, MYC, and KIT, show increased expression in DS-AMKL, suggesting that GATA1s fail to repress this class of genes. Only a subset of genes that are up-regulated upon GATA1 induction in the murine system show increased expression in DS-AMKL, including GATA1 and BACH1, a probable negative regulator of megakaryocytic differentiation located on chromosome 21. Surprisingly, expression of the chromosome 21 gene RUNX1, a known regulator of megakaryopoiesis, was not elevated in DS-AMKL. Our results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias.

184 citations

Journal ArticleDOI
15 Feb 1993-Blood
TL;DR: PCR amplification with primers from AML1 and ETO can be used as a more sensitive and accurate means for detecting this chromosomal abnormality, and for observing the patients' response to therapy.

184 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858