scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal Article
TL;DR: Ten cases of small ring chromosomes which did not stain with distamycinA/DAPI and did not possess satellite regions associated with nucleolus-organizing regions are described and additional cases with identified rings may allow the delineation of new chromosomal syndromes.
Abstract: Ten cases of small ring chromosomes which did not stain with distamycinA/DAPI and did not possess satellite regions associated with nucleolus-organizing regions are described In situ hybridization with a battery of biotinylated pericentric repeat probes specific either for individual chromosomes or for groups of chromosomes allowed the identification of the chromosomal origin of these marker chromosomes There was one example of a marker derived from each of chromosomes 1, 3, 6, 14, 16, 18, 20, 13 or 21, and the X, and there were two examples of markers derived from chromosome 12 One case possessed two markers, one derived from chromosome 6, and one derived from the X The mechanism of generation of ring marker chromosomes is discussed Five of seven cases who could be phenotypically assessed were abnormal Three of these--the first with a ring chromosome derived from chromosome 1; the second with two markers, one derived from chromosome 6 and the other from the X chromosome; and the third with a ring chromosome derived from chromosome 20--each possessed distinctive facies Additional cases with identified rings may allow the delineation of new chromosomal syndromes

137 citations

Journal ArticleDOI
TL;DR: By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, the conditional alleles of two genes involved in chromosome segregation (cse) are identified and cloned by complementation of the cold-sensitive phenotypes.
Abstract: By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, we have identified conditional alleles of two genes involved in chromosome segregation (cse). Mutations in CSE1 and CSE2 have a greater effect on the segregation of chromosomes carrying mutant centromeres than on the segregation of chromosomes with wild-type centromeres. In addition, the cse mutations cause predominantly nondisjunction rather than loss events but do not cause a detectable increase in mitotic recombination. At the restrictive temperature, cse1 and cse2 mutants accumulate large-budded cells, with a significant fraction exhibiting aberrant binucleate morphologies. We cloned the CSE1 and CSE2 genes by complementation of the cold-sensitive phenotypes. Physical and genetic mapping data indicate that CSE1 is linked to HAP2 on the left arm of chromosome VII and CSE2 is adjacent to PRP2 on chromosome XIV. CSE1 is essential and encodes a novel 109-kDa protein. CSE2 encodes a 17-kDa protein with a putative basic-region leucine zipper motif. Disruption of CSE2 causes chromosome missegregation, conditional lethality, and slow growth at the permissive temperature.

137 citations

Journal ArticleDOI
TL;DR: These results are not consistent with models in which initial amplification events occur by over-replication of the parental locus followed by recombination in loco, but are most compatible with either sister chromatid exchange between widely separated sites or with a form of conservative intrachromosomal duplication analogous to transposition in bacteria.
Abstract: We used fluorescence in situ hybridization to examine the products of early DNA sequence amplification events in CHO cells. Nine independent populations of cells were selected for resistance to 0.4 |XM methotrexate (MTX), and mitotic chromosome spreads were hybridized to a mixture of cloned cosmids representing —273 kb of contiguous DNA sequence from the dihydrofolate reductase (DHFR) locus. Of the nine populations, eight contain cells that have amplified the DHFR domain. Cells in the remaining population displayed only the two single-copy loci on chromosomes 2 and Z2. Of the eight amplificants, one carries amplified DHFR genes on chromosome 1, six on chromosome Z2, and one on an unidentified chromosome. Some cultures carry additional amplified genes on other chromosomes, probably resulting from bridge/breakage/fusion cycles or translocations. In six of the eight amplificants, both single-copy parental loci are detected at their original positions, and amplicon clusters are situated at least 50 megabases (Mb) away on the same chromosome arm, often at the termini. Amplification occurred at or close to the original site of the DHFR gene in only one population. Our results are not consistent with models in which initial amplification events occur by over-replication of the parental locus followed by recombination in loco. Because amplified DHFR sequences occur most often on the same chromosome arm as the parental DHFR gene but at a considerable distance from it, our results are most compatible with either sister chromatid exchange between widely separated sites or with a form of conservative intrachromosomal duplication analogous to transposition in bacteria.

136 citations

Journal ArticleDOI
TL;DR: Results from proteomics approaches are consistent with the hypothesis that increased interferon signaling caused by T21 leads to chronic immune dysregulation, and justify investigations to define the therapeutic value of immune-modulatory strategies in DS.
Abstract: Trisomy 21 (T21) causes Down syndrome (DS), but the mechanisms by which T21 produces the different disease spectrum observed in people with DS are unknown. We recently identified an activated interferon response associated with T21 in human cells of different origins, consistent with overexpression of the four interferon receptors encoded on chromosome 21, and proposed that DS could be understood partially as an interferonopathy. However, the impact of T21 on systemic signaling cascades in living individuals with DS is undefined. To address this knowledge gap, we employed proteomics approaches to analyze blood samples from 263 individuals, 165 of them with DS, leading to the identification of dozens of proteins that are consistently deregulated by T21. Most prominent among these proteins are numerous factors involved in immune control, the complement cascade, and growth factor signaling. Importantly, people with DS display higher levels of many pro-inflammatory cytokines (e.g. IL-6, MCP-1, IL-22, TNF-α) and pronounced complement consumption, resembling changes seen in type I interferonopathies and other autoinflammatory conditions. Therefore, these results are consistent with the hypothesis that increased interferon signaling caused by T21 leads to chronic immune dysregulation, and justify investigations to define the therapeutic value of immune-modulatory strategies in DS.

136 citations

Journal ArticleDOI
TL;DR: The hypothesis that the genetic component to stuttering has significant sex effects is supported, based on linkage studies in 100 families of European descent ascertained in the United States, Sweden, and Israel.
Abstract: Stuttering is a speech disorder long recognized to have a genetic component. Recent linkage studies mapped a susceptibility locus for stuttering to chromosome 12 in 46 highly inbred families ascertained in Pakistan. We report here on linkage studies in 100 families of European descent ascertained in the United States, Sweden, and Israel. These families included 252 individuals exhibiting persistent stuttering, 45 individuals classified as recovered from stuttering, and 19 individuals too young to classify. Primary analyses identified moderate evidence for linkage of the broader diagnosis of "ever stuttered" (including both persistent and recovered stuttering) on chromosome 9 (LOD = 2.3 at 60 cM) and of the narrower diagnosis of persistent stuttering on chromosome 15 (LOD = 1.95 at 23 cM). In contrast, sex-specific evidence for linkage on chromosome 7 at 153 cM in the male-only data subset (LOD = 2.99) and on chromosome 21 at 34 cM in the female-only data subset (LOD = 4.5) met genomewide criteria for significance. Secondary analyses revealed a significant increase in the evidence for linkage on chromosome 12, conditional on the evidence for linkage at chromosome 7, with the location of the increased signal congruent with the previously reported signal in families ascertained in Pakistan. In addition, a region on chromosome 2 (193 cM) showed a significant increase in the evidence for linkage conditional on either chromosome 9 (positive) or chromosome 7 (negative); this chromosome 2 region has been implicated elsewhere in studies on autism, with increased evidence for linkage observed when the sample is restricted to those with delayed onset of phrase speech. Our results support the hypothesis that the genetic component to stuttering has significant sex effects.

136 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858