scispace - formally typeset
Search or ask a question
Topic

Chromosome 21

About: Chromosome 21 is a research topic. Over the lifetime, 4736 publications have been published within this topic receiving 206655 citations. The topic is also known as: chr21 & Homo sapiens chromosome 21.


Papers
More filters
Journal ArticleDOI
TL;DR: A unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q, are described, suggesting that chromosomes 13q has an increased propensity for neocentromeres formation, relative to some other human chromosomes.
Abstract: Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of α-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.

100 citations

Journal ArticleDOI
05 May 2015-eLife
TL;DR: This study found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts, and identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome.
Abstract: Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is sufficient for the cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome.

99 citations

Journal ArticleDOI
05 Jun 1964-Science
TL;DR: The Philadelphia chromosome, characteristic of chronic granulocytic leukemia, contained 61�1 percent as much DNA as a number 21 (or 22) chromosome from which it is believed to be derived.
Abstract: The Philadelphia chromosome, characteristic of chronic granulocytic leukemia, contained 61+/-1 percent as much DNA as a number 21 (or 22) chromosome from which it is believed to be derived. The remaining 39 percent represents 0.5 percent of a diploid chromosome complement, approximately 2 x 10(7) nucleotide pairs; the method used was not sensitive enough to detect whether it had been translocated to other chromosomes.

99 citations

Journal Article
TL;DR: The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes.
Abstract: Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. We recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hypercholesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, we have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed--and subsequent cytogenetic analysis confirmed--that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a "maternal UPD chromosome 14 syndrome" is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes.

99 citations

Journal ArticleDOI
01 Oct 2008-Genetics
TL;DR: In this paper, stepwise restriction of recombination between the protosex chromosomes of birds has resulted in regions of the chicken Z chromosome showing discrete levels of divergence from W homologs (gametologs).
Abstract: Birds have female heterogamety with Z and W sex chromosomes. These evolved from different autosomal precursor chromosomes than the mammalian X and Y. However, previous work has suggested that the pattern and process of sex chromosome evolution show many similarities across distantly related organisms. Here we show that stepwise restriction of recombination between the protosex chromosomes of birds has resulted in regions of the chicken Z chromosome showing discrete levels of divergence from W homologs (gametologs). The 12 genes analyzed fall into three levels of estimated divergence values, with the most recent divergence (dS = 0.18–0.21) displayed by 6 genes in a region on the Z chromosome corresponding to the interval 1–11 Mb of the assembled genome sequence. Another 4 genes show intermediate divergence (dS = 0.27–0.38) and are located in the interval 16–53 Mb. Two genes (at positions 42 and 50 Mb) with higher dS values are located proximal to the most distal of the 4 genes with intermediate divergence, suggesting an inversion event. The distribution of genes and their divergence indicate at least three evolutionary strata, with estimated times for cessation of recombination between Z and W of 132–150 (stratum 1), 71–99 (stratum 2), and 47–57 (stratum 3) million years ago. An inversion event, or some other form of intrachromosomal rearrangement, subsequent to the formation of strata 1 and 2 has scrambled the gene order to give rise to the nonlinear arrangement of evolutionary strata currently seen on the chicken Z chromosome. These observations suggest that the progressive restriction of recombination is an integral feature of sex chromosome evolution and occurs also in systems of female heterogamety.

99 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
89% related
Exon
38.3K papers, 1.7M citations
88% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
84% related
DNA methylation
49.8K papers, 2.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202259
202147
202061
201943
201858