scispace - formally typeset

Topic

Chromosome 22

About: Chromosome 22 is a(n) research topic. Over the lifetime, 4384 publication(s) have been published within this topic receiving 205637 citation(s). The topic is also known as: chr22 & Homo sapiens chromosome 22.


Papers
More filters
Journal ArticleDOI
01 Jun 1973-Nature
TL;DR: An unsuspected abnormality in all cells from the nine patients with chronic myelogenous leukaemia has been detected with quinacrine fluorescence and various Giemsa staining techniques, suggesting that there may be a hitherto undetected translocation between the long arm of 22 and thelong arm of 9, producing the 9q+ chromosome.
Abstract: CELLS from nine consecutive patients with chronic myelogenous leukaemia (CML) have been analysed with quinacrine fluorescence and various Giemsa staining techniques. The Philadelphia (Ph1) chromosome in all nine patients represents a deletion of the long arm of chromosome 22 (22q−)1,2. An unsuspected abnormality in all cells from the nine patients has been detected with these new staining techniques. It consists of the addition of dully fluorescing material to the end of the long arm of one chromosome 9 (9q+). In Giemsa-stained preparations, this material appears as an additional faint terminal band in one chromosome 9. The amount of additional material is approximately equal to the amount missing from the Ph1 (22q−) chromosome, suggesting that there may be a hitherto undetected translocation between the long arm of 22 and the long arm of 9, producing the 9q+ chromosome.

3,934 citations

Journal ArticleDOI
01 Mar 1975-Blood
TL;DR: This CML cell-line represents a unique source of CML cells with meaningful indicators of malignancy for clinical and experimental studies.
Abstract: A cell-line derived from a patient with chronic myelogenous leukemia (CML) is described. The new cell-line, which has over 175 serial passanges in a 3 1/2-yr period, has the following characteristics: (1) CML cells started to proliferate actively since they were first incubated in culture media. A threefold increase in the total number of cells was observed during the first seven passages; the cell population increased by a factor of 10 to 20 every 7 days from passage 8 through 85; from 20 to 40 times from passage 86 through 150, and more than 40 times after 150 passages. (2) The majority of the nononucleated cells are undifferentiated blasts. (3) The karyotype of all the cells examined show the Philadelphia (Ph1) chromosome and a long acrocentric marker plus aneuploidy. The Giemsa-banding studies identified the Ph1 chromosome as a terminal deletion of the long arm of chromosome 22:del(22)(q12) and the long acrocentric marker as an unbalanced reciprocal translocation of one chromosome 17 and the long arm of one chromosome 15. (4) The CML cells do not produce immunoglobulins, are free of mycoplasma, Epstein-Barr virus, and herpes-like virus particles. (5) CML cells have no alkaline phosphatase and myeloperoxidase activities and did not engulf inert particles. (6) Cultured CML cells provide a constant source of a specific antigen. This CML cell-line represents a unique source of CML cells with meaningful indicators of malignancy for clinical and experimental studies.

2,722 citations

Journal ArticleDOI
TL;DR: A highly conserved repetitive DNA sequence, (TTAGGG)n, has been isolated from a human recombinant repetitive DNA library and its similarity to functional telomeres isolated from lower eukaryotes suggest that this sequence is a functional human telomere.
Abstract: A highly conserved repetitive DNA sequence, (TTAGGG)n, has been isolated from a human recombinant repetitive DNA library. Quantitative hybridization to chromosomes sorted by flow cytometry indicates that comparable amounts of this sequence are present on each human chromosome. Both fluorescent in situ hybridization and BAL-31 nuclease digestion experiments reveal major clusters of this sequence at the telomeres of all human chromosomes. The evolutionary conservation of this DNA sequence, its terminal chromosomal location in a variety of higher eukaryotes (regardless of chromosome number or chromosome length), and its similarity to functional telomeres isolated from lower eukaryotes suggest that this sequence is a functional human telomere.

2,135 citations

Book
01 Jan 1985
TL;DR: This poster presents a probabilistic procedure to count the number of chromosomes in the nucleus using a simple “spatially aggregating” procedure called “spot-spot analysis”.
Abstract: Chromosome 1-22 Chromosome X Chromosome Y Homogeneously Staining Regions (HSR) Ring Chromosomes (R) Double Minute Chromosomes (DMIN).

1,713 citations

Journal ArticleDOI
03 Aug 2000-Nature
TL;DR: The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.
Abstract: Here we determine the complete genomic sequence of the Gram negative, g-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the g-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.

1,699 citations

Network Information
Related Topics (5)
Mutation

45.2K papers, 2.6M citations

85% related
Locus (genetics)

42.7K papers, 2M citations

84% related
Gene

211.7K papers, 10.3M citations

84% related
DNA methylation

49.8K papers, 2.5M citations

82% related
Gene expression

113.3K papers, 5.5M citations

80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202115
202012
201914
201821
201732