scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome 22 published in 2002"


Journal ArticleDOI
03 May 2002-Science
TL;DR: Empirically derived maps identifying active areas of RNA transcription on these chromosomes have been constructed with the use of cytosolic polyadenylated RNA obtained from 11 human cell lines with results that indicate there are approximately 770 well-characterized and predicted genes.
Abstract: The sequences of the human chromosomes 21 and 22 indicate that there are approximately 770 well-characterized and predicted genes. In this study, empirically derived maps identifying active areas of RNA transcription on these chromosomes have been constructed with the use of cytosolic polyadenylated RNA obtained from 11 human cell lines. Oligonucleotide arrays containing probes spaced on average every 35 base pairs along these chromosomes were used. When compared with the sequence annotations available for these chromosomes, it is noted that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized exons.

850 citations


Journal ArticleDOI
26 Jul 2002-Science
TL;DR: Recent work with yeast, Xenopus, and other model systems has provided new information about the proteins that control chromosome segregation during cell division and how the activities of these proteins are coordinated with the cell cycle.
Abstract: During cell division, each daughter cell inherits one copy of every chromosome. Accurate transmission of chromosomes requires that the sister DNA molecules created during DNA replication are disentangled and then pulled to opposite poles of the cell before division. Defects in chromosome segregation produce cells that are aneuploid (containing an abnormal number of chromosomes)-a situation that can have dire consequences. Aneuploidy is a leading cause of spontaneous miscarriages in humans and is also a hallmark of many human cancer cells. Recent work with yeast, Xenopus, and other model systems has provided new information about the proteins that control chromosome segregation during cell division and how the activities of these proteins are coordinated with the cell cycle.

560 citations


Journal ArticleDOI
01 Aug 2002-Nature
TL;DR: This study demonstrates the feasibility of developing genome-wide maps of LD and shows a strong correlation between high LD and low recombination frequency in the extant genetic map, suggesting that historical and contemporary recombination rates are similar.
Abstract: DNA sequence variants in specific genes or regions of the human genome are responsible for a variety of phenotypes such as disease risk or variable drug response. These variants can be investigated directly, or through their non-random associations with neighbouring markers (called linkage disequilibrium (LD)). Here we report measurement of LD along the complete sequence of human chromosome 22. Duplicate genotyping and analysis of 1,504 markers in Centre d'Etude du Polymorphisme Humain (CEPH) reference families at a median spacing of 15 kilobases (kb) reveals a highly variable pattern of LD along the chromosome, in which extensive regions of nearly complete LD up to 804 kb in length are interspersed with regions of little or no detectable LD. The LD patterns are replicated in a panel of unrelated UK Caucasians. There is a strong correlation between high LD and low recombination frequency in the extant genetic map, suggesting that historical and contemporary recombination rates are similar. This study demonstrates the feasibility of developing genome-wide maps of LD.

432 citations


Journal ArticleDOI
TL;DR: Data indicate that aside from being the child of two parents with schizophrenia or the monozygotic co-twin of an affected individual, VCFS and deletion 22q11 represents the highest known risk factor for the development of schizophrenia.

284 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report the large-scale development of Y chromosome conserved anchor tagged sequence (YCATS) markers in mammals by a polymerase chain reaction screening approach.
Abstract: Y chromosome haplotyping based on microsatellites or single nucleotide polymorphisms has recently proven to be a powerful approach for evolutionary studies of human populations, and also holds great promise for the studies of wild species. However, the use of the approach is hampered in most natural populations by the lack of Y chromosome markers and sequence information. Here, we report the large-scale development of Y chromosome conserved anchor tagged sequence (YCATS) markers in mammals by a polymerase chain reaction screening approach. Exonic primers flanking 48 different introns of Y-linked genes were developed based on human and mouse sequences, and screened on a set of 20 different mammals. On average about 10 introns were amplified for each species and a total of 100 kb of Y chromosome sequence were obtained. Intron size in humans was a reasonable predictor of intron size in other mammals (r2 = 0.45) and there was a negative correlation between human fragment size and amplification success. We discuss a number of factors affecting the possibility of developing conserved Y chromosome markers, including fast evolution of Y chromosome sequences due to male-biased mutation and adaptive evolution of male-specific genes, dynamic evolution of the Y chromosome due to being a nonrecombining unit, and homology with X chromosome sequences.

261 citations


Journal ArticleDOI
TL;DR: It is shown that in a lymphoma cell line derived from an ATM(-/-) mouse, two translocated chromosomes are preferentially positioned in close proximity to each other, and this data support the notion that physical proximity facilitates rearrangements between chromosomes.

192 citations


Journal ArticleDOI
TL;DR: This approach allows us, for the first time, to paint an entire autosome of an euploid plant to study chromosome rearrangements, homologue association, interphase chromosome territories, as well as to identify homeologous chromosomes of related species.
Abstract: Chromosome painting, that is visualisation of chromosome segments or whole chromosomes based on fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes is widely used for chromosome studies in mammals, birds, reptiles and insects. Attempts to establish chromosome painting in euploid plants have failed so far. Here, we report on chromosome painting in Arabidopsis thaliana (n = 5, 125 Mb C(-1)). Pools of contiguous 113-139 BAC clones spanning 2.6 and 13.3 Mb of the short and the long arm of chromosome 4 (17.5 Mb) were used to paint this entire chromosome during mitotic and meiotic divisions as well as in interphase nuclei. The possibility of identifying any particular chromosome region on pachytene chromosomes and within interphase nuclei using selected BACs is demonstrated by differential labelling. This approach allows us, for the first time, to paint an entire autosome of an euploid plant to study chromosome rearrangements, homologue association, interphase chromosome territories, as well as to identify homeologous chromosomes of related species.

168 citations


Journal ArticleDOI
TL;DR: A chromosome-wide view of the structure and evolution of the most highly homologous duplications on chromosome 22 suggests that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species.
Abstract: In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent ( in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species.

166 citations


Journal ArticleDOI
TL;DR: The first comprehensive microarray representing a human chromosome for analysis of DNA copy number variation and comprehensive epigenetic profiling of 22q-located genes and high-resolution analysis of replication timing across the entire chromosome are constructed.
Abstract: We have constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number variation. This chromosome 22 array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb. To demonstrate the utility of the array, we have applied it to profile acral melanoma, dermatofibrosarcoma, DiGeorge syndrome and neurofibromatosis 2. We accurately diagnosed homozygous/heterozygous deletions, amplifications/gains, IGLV/IGLC locus instability, and breakpoints of an imbalanced translocation. We further identified the 14-3-3 eta isoform as a candidate tumor suppressor in glioblastoma. Two significant methodological advances in array construction were also developed and validated. These include a strictly sequence defined, repeat-free, and non-redundant strategy for array preparation. This approach allows an increase in array resolution and analysis of any locus; disregarding common repeats, genomic clone availability and sequence redundancy. In addition, we report that the application of phi29 DNA polymerase is advantageous in microarray preparation. A broad spectrum of issues in medical research and diagnostics can be approached using the array. This well annotated and gene-rich autosome contains numerous uncharacterized disease genes. It is therefore crucial to associate these genes to specific 22q-related conditions and this array will be instrumental towards this goal. Furthermore, comprehensive epigenetic profiling of 22q-located genes and high-resolution analysis of replication timing across the entire chromosome can be studied using our array.

151 citations


Journal ArticleDOI
01 Feb 2002-Genomics
TL;DR: It is shown here that the 4q homology on chromosome 10 is not confined to the 3.3-kb repeats but extends both proximally and distally to include the telomere, which may represent a relatively common subtelomeric domain.

138 citations


Journal ArticleDOI
TL;DR: The finding that B-chromosomes are able to show very regular segregation from the X chromosome, reinforce the hypothesis that the Drosophila Y is a specialized B- chromosome, instead of a degenerated homologue of the X.

Journal ArticleDOI
TL;DR: It is concluded that all relevant and analyzable families support or are consistent with block/chromosome duplications and that none clearly contradicts the 2R hypothesis.
Abstract: Many chromosome regions in the human genome exist in four similar copies, suggesting that the entire genome was duplicated twice in early vertebrate evolution, a concept called the 2R hypothesis. Forty-two gene families on the four Hox-bearing chromosomes were recently analyzed by others, and 32 of these were reported to have evolutionary histories incompatible with duplications concomitant with the Hox clusters, thereby contradicting the 2R hypothesis. However, we show here that nine of the families have probably been translocated to the Hox-bearing chromosomes more recently, and that three of these belong to other chromosome quartets where they actually support the 2R hypothesis. We consider 13 families too complex to shed light on the chromosome duplication hypothesis. Among the remaining 20 families, 14 display phylogenies that support or are at least consistent with the Hox-cluster duplications. Only six families seem to have other phylogenies, but these trees are highly uncertain due to shortage of sequence information. We conclude that all relevant and analyzable families support or are consistent with block/chromosome duplications and that none clearly contradicts the 2R hypothesis.

Journal ArticleDOI
09 Dec 2002-Oncogene
TL;DR: The data is reviewed on the correlations between the type of BCR/ABL gene and the corresponding leukemic clinical features and insight is provided into the different transforming power of the three hybrid BCR-ABL proteins.
Abstract: The Philadelphia chromosome (Ph), a minute chromosome that derives from the balanced translocation between chromosomes 9 and 22, was first described in 1960 and was for a long time the only genetic lesion consistently associated with human cancer. This chromosomal translocation results in the fusion between the 5' part of BCR gene, normally located on chromosome 22, and the 3' part of the ABL gene on chromosome 9 giving origin to a BCR/ABL fusion gene which is transcribed and then translated into a hybrid protein. Three main variants of the BCR/ABL gene have been described, that, depending on the length of the sequence of the BCR gene included, encode for the p190(BCR/ABL), P210(BCR/ABL), and P230(BCR/ABL) proteins. These three main variants are associated with distinct clinical types of human leukemias. Herein we review the data on the correlations between the type of BCR/ABL gene and the corresponding leukemic clinical features. Lastly, drawing on experimental data, we provide insight into the different transforming power of the three hybrid BCR/ABL proteins.

Journal ArticleDOI
TL;DR: Findings of CHK2 gene mutations are consistent with osteosarcoma being a defining tumor of Li‐Fraumeni syndrome and emphasizes the importance of the stress pathway which includes TP53.
Abstract: Checkpoint genes, activated in response to DNA damage and other stresses, are frequently targeted for alteration in cancer. Checkpoint kinase 2 (CHK2, CDS1, RAD53) is activated by ataxia telangiectasia mutated (ATM) in response to gamma irradiation. Activated CHK2 stabilizes TP53, and acts on other cell cycle and stress regulators. These findings place CHK2 in the middle of a pathway frequently targeted in cancer. Because of this, and the observation that CHK2 mutations are inherited in some Li-Fraumeni cancer syndrome families, we decided to examine the role of CHK2 mutations in sporadic cancers. Exploiting the genomic sequence of chromosome 22, we looked for mutations in the exons and intron junctions of the CHK2 gene in DNA samples from 170 patients (57 osteosarcomas, 25 other sarcomas, 35 nonsmall-cell lung, 20 ovarian, and 33 breast cancers). Missense mutations affecting the forkhead and kinase domains were detected in four osteosarcomas and in one ovarian and one lung cancer. These findings of CHK2 gene mutations are consistent with osteosarcoma being a defining tumor of Li-Fraumeni syndrome. The occurrence of CHK2 mutations in sporadic cancers emphasizes the importance of the stress pathway which includes TP53.

Journal ArticleDOI
01 May 2002-Genetics
TL;DR: The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping.
Abstract: We used structural genomic resources for Sorghum bicolor (L.) Moench to target and develop multiple molecular cytogenetic probes that would provide extensive coverage for a specific chromosome of sorghum. Bacterial artificial chromosome (BAC) clones containing molecular markers mapped across sorghum linkage group A were labeled as probes for fluorescence in situ hybridization (FISH). Signals from single-, dual-, and multiprobe BAC-FISH to spreads of mitotic chromosomes and pachytene bivalents were associated with the largest sorghum chromosome, which bears the nucleolus organizing region (NOR). The order of individual BAC-FISH loci along the chromosome was fully concordant to that of marker loci along the linkage map. In addition, the order of several tightly linked molecular markers was clarified by FISH analysis. The FISH results indicate that markers from the linkage map positions 0.0-81.8 cM reside in the short arm of chromosome 1 whereas markers from 81.8-242.9 cM are located in the long arm of chromosome 1. The centromere and NOR were located in a large heterochromatic region that spans approximately 60% of chromosome 1. In contrast, this region represents only 0.7% of the total genetic map distance of this chromosome. Variation in recombination frequency among euchromatic chromosomal regions also was apparent. The integrated data underscore the value of cytological data, because minor errors and uncertainties in linkage maps can involve huge physical regions. The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping. Such a molecular cytogenetic infrastructure would be inherently cross-linked with other genomic tools and thereby establish a cytogenomics system with extensive utility in development and application of genomic resources, cloning, transgene localization, development of plant "chromonomics," germplasm introgression, and marker-assisted breeding. In combination with previously reported work, the results indicate that a sorghum cytogenomics system would be partially applicable to other gramineous genera.

Journal ArticleDOI
TL;DR: This is the first report that fully documents one of the mechanisms by which B chromosomes may arise in nature and Ag-NOR-banding and determination of the maximum number of nucleoli in interphase cells indicate that the nucleolar organizer regions at the ends of both arms of the B chromosome are active in organizing nucleoli.
Abstract: The present study documents the de novo origin of an apparent B chromosome in Plantago lagopus. The origin was associated with mutation (aneuploidy), chromosome fragmentation, specific DNA sequence amplification, addition of telomeric repeats, and centromeric misdivision. It originated in the progeny of trisome 2, from the excision of 5S rDNA and 18S, 5.8S, 25S rDNA sequences located on chromosome 2, and within a few generations acquired many characteristics of an apparent B chromosome. The B chromosome has preferential transmission through the male (41%, P<0.025) and female gametes (42%, P<0.01) but does not affect plant phenotype. The B chromosome is completely heterochromatic, has a functional centromere and does not pair at meiosis with any A chromosomes of the standard complement. Fluorescence in situ hybridization analysis showed that it arose from massive amplification of 5S rDNA sequences, has 18S, 5.8S, 25S rDNA sequences at the ends of both arms and telomeric repeats at both termini. Ag-NOR-banding and determination of the maximum number of nucleoli in interphase cells indicate that the nucleolar organizer regions at the ends of both arms of the B chromosome are active in organizing nucleoli. RNA blot analysis showed that the 5S rDNA sequences are not transcribed. To our knowledge, this is the first report that fully documents one of the mechanisms by which B chromosomes may arise in nature.

Journal ArticleDOI
TL;DR: In this paper, the authors report cytogenetic findings in 19 c-Kit-positive gastrointestinal stromal tumors (GISTs) that represent a heterogenous group of mesenchymal neoplasms with respect to site, histology, and biologic behavior.

Journal ArticleDOI
TL;DR: The data indicate that most SNPs in LCR segments are in fact paralogous sequence variants (PSVs), and suggest that a significant proportion of theSNPs in the NCBI database correspond to PSVs within segmental duplications of the human genome sequence.
Abstract: We have explored the National Center for Biotechnology Information (NCBI) single nucleotide polymorphisms (SNPs) database for a correlation between the density of putative SNPs, as well as SNPs that map to different chromosomal locations (ambiguously mapped SNPs), and segmental duplications of DNA in chromosome regions involved in genomic disorders. A high density of SNPs (14.4 and 12.4 SNPs per kb) was detected in the low copy repeats (LCRs) responsible for the chromosome 17p12 duplication and deletion that cause peripheral neuropathies. None of the SNPs at the PMP22 gene were ambiguously mapped, but 93% of the SNPs at LCRs mapped on both LCR copies, indicating that they are in fact variants in paralogous sequences. Similarly, a high SNP density was found in the LCR regions flanking the neurofibromatosis type 1 (NF1) gene, with 80% of SNPs mapping on both LCR copies. A high density of SNPs was found within LCR sequences involved in the deletions that mediate contiguous gene syndromes on chromosomes 7q11, 15q11-q13 and 22q11. We have analyzed the whole sequence of chromosome 22, which contains 14% of ambiguously mapped SNPs, and have found a good correlation between these SNPs and segmental duplications detected by BLAST analysis. We have identified several segments of ambiguously mapped SNPs, four corresponding to LCRs involved in the chromosome 22q11 microdeletion syndromes. Our data indicate that most SNPs in LCR segments are in fact paralogous sequence variants (PSVs), and suggest that a significant proportion of the SNPs in the NCBI database correspond to PSVs within segmental duplications of the human genome sequence.

Journal ArticleDOI
TL;DR: Findings indicate that gain of sequences from the short arm of chromosome 12 could be a possible genetic pathway in the development of aggressive osteosarcoma.
Abstract: Most osteosarcomas are highly aggressive malignancies characterized by a complex pattern of chromosome abnormalities. However, a subgroup of low-grade, parosteal tumors exhibits a relatively simple aberration pattern dominated by ring chromosomes carrying amplified material from chromosome 12. To assess whether sequences from this chromosome were differentially amplified in low- and high-grade osteosarcomas, copy numbers of the CCND2, ETV6, KRAS2, and D12S85 regions in 12p and the MDM2 region in 12q were evaluated by interphase or metaphase fluorescence in situ hybridization (FISH) in 24 osteosarcomas. Amplification of MDM2 was detected in all five low-grade and four high-grade osteosarcomas, all of which showed ring chromosomes. An overrepresentation of 12p sequences was found in 1/5 low-grade and in 9/19 high-grade tumors. Multicolor single-copy FISH analysis of metaphase cells from six high-grade tumors showed that extra 12p material either occurred together with MDM2 in ring chromosomes or was scattered over the genome as a result of complex structural rearrangements. Most tumors (8/10) not containing amplification of the assessed chromosome 12 loci exhibited a nondiploid pattern at evaluation with probes for centromeric alpha satellite sequences. These findings indicate that gain of sequences from the short arm of chromosome 12 could be a possible genetic pathway in the development of aggressive osteosarcoma.

Journal ArticleDOI
TL;DR: This map is the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies and showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, indicating that this chromosome is likely very difficult to sequence.
Abstract: As part of an international effort to completely sequence the rice genome, we have produced a fine bacterial artificial chromosome (BAC)-based physical map of the Oryza sativa japonica Nipponbare chromosome 4 through an integration of 114 sequenced BAC clones from a taxonomically related subspecies O. sativa indica Guangluai 4 and 182 RFLP and 407 expressed sequence tag (EST) markers with the fingerprinted data of the Nipponbare genome. The map consists of 11 contigs with a total length of 34.5 Mb covering 94% of the estimated chromosome size (36.8 Mb). BAC clones corresponding to telomeres, as well as to the centromere position, were determined by BAC-pachytene chromosome fluorescence in situ hybridization (FISH). This gave rise to an estimated length ratio of 5.13 for the long arm and 2.9 for the short arm (on the basis of the physical map), which indicates that the short arm is a highly condensed one. The FISH analysis and physical mapping also showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, which occupied 45% of the chromosome, indicating that this chromosome is likely very difficult to sequence. To our knowledge, this map provides the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies. [The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: S. McCouch, T. Sasaki, and Monsanto.]

Journal ArticleDOI
TL;DR: The findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation in chimpanzee chromosome 19, and this inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes.
Abstract: A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2–39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes.

Journal ArticleDOI
TL;DR: A patient with a typical form of chronic myeloid leukemia was found to carry a large deletion on the derivative chromosome 9q+ and an unusual BCR-ABL transcript characterized by the insertion of 126 bp derived from a region located on chromosome 9, 1.4 Mb 5′ to ABL.
Abstract: A patient with a typical form of chronic myeloid leukemia was found to carry a large deletion on the derivative chromosome 9q+ and an unusual BCR-ABL transcript characterized by the insertion, between BCR exon 14 and ABL exon 2, of 126 bp derived from a region located on chromosome 9, 1.4 Mb 5' to ABL. This sequence was contained in the bacterial artificial chromosome RP11-65J3, which in fluorescence in situ hybridization experiments on normal metaphases was found to detect, in addition to the predicted clear signal at 9q34, a faint but distinct signal at 22q11.2, where the BCR gene is located, suggesting the presence of a large region of homology between the two chromosomal regions. Indeed, blast analysis of the RP11-65J3 sequence against the entire human genome revealed the presence of a stretch of homology, about 76 kb long, located approximately 150 kb 3' to the BCR gene, and containing the 126-bp insertion sequence. Evolutionary studies using fluorescence in situ hybridization identified the region as a duplicon, which transposed from the region orthologous to human 9q34 to chromosome 22 after the divergence of orangutan from the human-chimpanzee-gorilla common ancestor about 14 million years ago. Recent sequence analyses have disclosed an unpredicted extensive segmental duplication of our genome, and the impact of duplicons in triggering genomic disorders is becoming more and more apparent. The discovery of a large duplicon relatively close to the ABL and BCR genes and the finding that the 126-bp insertion is very close to the duplicon at 9q34 open the question of the possible involvement of the duplicon in the formation of the Philadelphia chromosome translocation.

Journal ArticleDOI
TL;DR: Loss of chromosome 22 identifies high risk Wilms tumors and prognostic significance of 1q gain, 16q loss and unbalanced translocation der(16)t(1q;16q) is unresolved and warrants further investigation.
Abstract: Background Tumor genetic features reported to correlate with adverse outcome in Wilms tumor include karyotype complexity, losses of material from the short arm of chromosome 1 and from the long arms of chromosomes 11, 16 and 22 and gain of material from the long arm of chromosome 1. This study sought to test these associations in a large series of tumors studied by cytogenetic analysis. Identification of markers associated with elevated risk of relapse and fatal outcome could allow more effective treatment stratification at presentation. Procedure Thirteen member laboratories of the U.K. Cancer Cytogenetics Group provided results from a 12-year period. Karyotype abnormalities were correlated with clinical data (age, tumor stage, and histology) and outcome data provided by the central register of the U.K. Children's Cancer Study Group. Results Of 127 abnormal karyotypes, 78 included a reputedly “poor prognosis” feature. Univariate survival analysis showed no significant adverse effect for karyotype complexity, 1p loss or 11q loss. The poor outcome of cases with 16q loss was of borderline significance, but this effect was restricted to those tumors with unbalanced translocation der(16)t(1q;16q). The association between relapse risk and gain of 1q material was not significant. Only monosomy 22 was a significant marker of poor outcome in univariate analysis (13 cases showing 50% relapse free survival at 5 years compared to 79% survival for the remaining 114 cases, P = 0.02). In multivariate analysis, significant independent predictors of poor outcome were 1q gain (Hazard Ratio 3.4), stage IV disease (HR 5.0), and monosomy 22 (HR 5.9). Conclusions Loss of chromosome 22 identifies high risk Wilms tumors. The prognostic significance of 1q gain, 16q loss and unbalanced translocation der(16)t(1q;16q) is unresolved and warrants further investigation. Med Pediatr Oncol 2002;38:11–21. © 2002 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Combinations of mcd libraries and locus-specific large insert DNA probes appear to be the most efficient tools for high-resolution cytogenetic analyses.
Abstract: Multicolor chromosome banding (MCB) allows the delineation of chromosomal regions with a resolution of a few megabasepairs, i.e., slightly below the size of most visible chromosome bands. Based on the hybridization of overlapping region-specific probe libraries, chromosomal subregions are hybridized with probes that fluoresce in distinct wavelength intervals, so they can be assigned predefined pseudo-colors during the digital imaging and visualization process. The present study demonstrates how MCB patterns can be produced by region-specific microdissection derived (mcd) libraries as well as collections of yeast or bacterial artificial chromosomes (YACs and BACs, respectively). We compared the efficiency of an mcd library based approach with the hybridization of collections of locus-specific probes (LSP) for fluorescent banding of three rather differently sized human chromosomes, i.e., chromosomes 2, 13, and 22. The LSP sets were comprised of 107 probes specific for chromosome 2, 82 probes for chromosome 13, and 31 probes for chromosome 22. The results demonstrated a more homogeneous coverage of chromosomes and thus, more desirable banding patterns using the microdissection library-based MCB. This may be related to the observation that chromosomes are difficult to cover completely with YAC and/or BAC clones as single-color fluorescence in situ hybridization (FISH) experiments showed. Mcd libraries, on the other hand, provide high complexity probes that work well as region-specific paints, but do not readily allow positioning of breakpoints on genetic or physical maps as required for the positional cloning of genes. Thus, combinations of mcd libraries and locus-specific large insert DNA probes appear to be the most efficient tools for high-resolution cytogenetic analyses.

Journal ArticleDOI
01 Nov 2002-Genetics
TL;DR: It is concluded that genomic imprinting affecting gene expression is a general property of the Drosophila Y chromosome and distinguishes the Y from the autosomal complement.
Abstract: Genomic imprinting is well known as a regulatory property of a few specific chromosomal regions and leads to differential behavior of maternally and paternally inherited alleles. We surveyed the activity of two reporter genes in 23 independent P-element insertions on the heterochromatic Y chromosome of Drosophila melanogaster and found that all but one location showed differential expression of one or both genes according to the parental source of the chromosome. In contrast, genes inserted in autosomal heterochromatin generally did not show imprint-regulated expression. The imprints were established on Y-linked transgenes inserted into many different sequences and locations. We conclude that genomic imprinting affecting gene expression is a general property of the Drosophila Y chromosome and distinguishes the Y from the autosomal complement.

Patent
10 May 2002
TL;DR: In this article, a human artificial chromosome which is genetically transmissible to the next generation with high efficiency and the method for using the same was presented, where an about 3.5 Mb to about 1 Mb region containing an antibody λ light chain gene derived from human chromosome 22 was bound to a chromosome fragment which was transmissible through a progeny through a germ line of a non-human animal.
Abstract: The present invention relates to a human artificial chromosome which is genetically transmissible to the next generation with high efficiency and the method for using the same. More specifically, the present invention relates to: a human artificial chromosome in which an about 3.5 Mb to about 1 Mb region containing an antibody λ light chain gene derived from human chromosome 22 is bound to a chromosome fragment which is transmissible to a progeny through a germ line of a non-human animal, said chromosome fragment is derived from another human chromosome; a non-human animal carrying the human artificial chromosome and an offspring thereof; a method for producing the non-human animal; a method for producing a human antibody using the non-human animal or an offspring thereof; and a human antibody-producing mouse carrying the human artificial chromosome.

Journal ArticleDOI
TL;DR: The authors' analyses suggest that a high proportion of genes in OGG regions are disease-associated, genomic rearrangements are likely to occur within OGGs, possibly as a consequence of anomalous sequence features prevalent in these regions, and multiple amino acid runs are also frequently associated with pathologies.
Abstract: Overlapping gene groups (OGGs) arise when exons of one gene are contained within the introns of another. Typically, the two overlapping genes are encoded on opposite DNA strands. OGGs are often associated with specific disease phenotypes. In this report, we identify genes with OGG architecture and genes encoding multiple long amino acid runs and examine their relations to diseases. OGGs appear to be susceptible to genomic rearrangements as happens commonly with the loci of the DiGeorge syndrome on human chromosome 22. We also examine the degree of conservation of OGGs between human and mouse. Our analyses suggest that (i) a high proportion of genes in OGG regions are disease-associated, (ii) genomic rearrangements are likely to occur within OGGs, possibly as a consequence of anomalous sequence features prevalent in these regions, and (iii) multiple amino acid runs are also frequently associated with pathologies.

Journal ArticleDOI
TL;DR: An epigenetic explanation for monozygotic twins concordant for del 22q11 discordance is discussed that is compatible with modern molecular understanding of the human genome, the sequence features of this region of chromosome 22, and the “second hit” hypothesis involving genetic and/or epigenetic somatic events.
Abstract: The completion of the human genome sequence affords novel approaches to studies on contiguous gene deletion syndromes. These syndromes are caused by a deletion and loss of one copy of a set of contiguous genes on a given chromosome. Here, the syndromic phenotypes are often attributed to haploinsufficiency of a number of deleted genes. One such syndrome deals with deletion of 22q11.2. It is the most common microdeletion syndrome with a frequency of 1:4000 live births.1 This high frequency has been attributed to low copy repeats (LCR) on chromosome 22,2 with most cases (85-90%) representing de novo mutations. Also, the critical common region is relatively large (>1.5-3.0 Mb), may involve >30 genes, and there is no evidence of any correlation between the size of the deletion and the observed syndromic phenotypes.3 In fact, the clinical phenotype of the 22q11 deletion syndrome is characterised by extensive variability.4 It includes velocardiofacial syndrome (VCFS), DiGeorge syndrome (DGS), and associated physical, developmental, neurological, and neuropsychiatric phenotypes. This phenotypic variability associated with the 22q11 deletion is an exception to all the other contiguous gene syndromes. More puzzling are recent reports that monozygotic twins (p>0.99) with 22q11 deletions have discordant phenotypes. In this discussion we will review all published cases of monozygotic twins concordant for del 22q11 and assess phenotypic discordance/concordance between them. More important, we will discuss an epigenetic explanation for their discordance that is compatible with modern molecular understanding of the human genome, the sequence features of this region of chromosome 22, and the “second hit” hypothesis involving genetic and/or epigenetic somatic events. ### Twin pair 1 Twin pair 15 was born to a 32 year old mother of European ancestry, at a gestational age of 38 weeks, weighing 2200 g (twin 1) and 2800 g (twin 2), apparently from a single placenta. …

Journal ArticleDOI
TL;DR: A minimally deleted region on both chromosomes 9 and 22 was identified and was found to contain the ASS gene on chromosome 9 and IGLL1 on chromosome 22.
Abstract: Deletions adjacent to the 9/22 translocation breakpoint on the derivative chromosome 9 have recently been described in a substantial number of chronic myeloid leukemia (CML) cases, but their extension has not been characterized in detail. Using FISH with an appropriate set of BAC/PAC probes, we have characterized the deletion in 10 CML cases, identified by screening 71 patients at diagnosis. Five patients showed a complex chromosome rearrangement and 3 of them were deleted. The size of the deletion was variable, ranging from few hundreds kb to 8 Mb. A minimally deleted region on both chromosomes 9 and 22 was identified and was found to contain the ASS gene on chromosome 9 and IGLL1 on chromosome 22. © 2002 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Three candidate tumor suppressor genes on chromosome 9 are investigated at the DNA level and by expression analysis in a panel of bladder tumor cell lines, many of which have probable LOH along the length of the chromosome, as indicated by homozygosity for multiple polymorphic markers.
Abstract: Underrepresentation of chromosome 9 is a common finding in bladder cancer Frequent loss of the whole chromosome suggests the presence of at least one relevant tumor suppressor gene on each arm Candidate regions identified by loss of heterozygosity (LOH) analysis include a region at 9p21 containing CDKN2A, which encodes p16 and p14(ARF), a large region at 9q12-31 including PTCH and many other genes, a small region at 9q32-33, which includes the DBCCR1 gene, and a region at 9q34 including the TSC1 gene Experimental replacement of genes or chromosomes into tumor cells with appropriate deletions or mutations represents an important approach to test the functional significance of candidate tumor suppressor genes Loss of an entire copy of chromosome 9 in many bladder tumor cell lines provides no indication of which gene or genes are affected, and selection of appropriate recipient cells for gene replacement is difficult We have investigated three candidate tumor suppressor genes on chromosome 9 (CDKN2A, DBCCR1, and TSC1), at the DNA level and by expression analysis in a panel of bladder tumor cell lines, many of which have probable LOH along the length of the chromosome, as indicated by homozygosity for multiple polymorphic markers Cytogenetically, we found no reduction in the numbers of chromosomes 9 relative to total chromosome count Homozygous deletion of the CDKN2A locus was frequent but homozygous deletion of TSC1 was not found A new cell line, DSH1, derived from a pT1G2 transitional cell carcinoma with known homozygous deletion of DBCCR1, is described This study identifies suitable cell lines for future functional analysis of both CDKN2A and DBCCR1