scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome published in 1992"


Book
23 Mar 1992
TL;DR: Chromosomes: Deficiencies, Inversions, and Transposable Elements.
Abstract: Genes. Chromosomes: Deficiencies. Duplications. Inversions. Rings. Translocations. Transpositions. External Anatomy (figure). Normal Chromosome Complement. Special Chromosomes: Balancers. Compound Chromosomes. X-Y Combinations. Y Derivatives. Autosynaptic Chromosomes. Transposable Elements. Departures from Diploidy. Satellite Sequences. Nonchromosomal Inheritance. Cytogenetic Map.

3,102 citations


Journal ArticleDOI
01 Dec 1992-Genetics
TL;DR: Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.
Abstract: High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.

1,636 citations


Journal ArticleDOI
01 Dec 1992-Genomics
TL;DR: Analysis of a 40-bp repeat in the 3' untranslated region of the message revealed variable numbers of the repeat ranging from 3 to 11 copies, which will aid in the investigation of a role for this gene in genetic disorders of the dopaminergic system in humans.

717 citations


Journal ArticleDOI
01 Oct 1992-Blood
TL;DR: A restriction map of the chromosome 21 breakpoint region involved in t(8;21)(q22;q22.3) acute myelogenous leukemia (AML) is developed and a genomic junction clone containing chromosome 8 and 21 material is isolated.

633 citations


Journal ArticleDOI
TL;DR: Fluorescence in situ hybridization to metaphase chromosomes or chromatin fibers in interphase nuclei is a powerful technique in mapping genes and DNA segments to specific chromosome region and can be generally used to study the structure and organization of mammalian genomes.
Abstract: Fluorescence in situ hybridization to metaphase chromosomes or chromatin fibers in interphase nuclei is a powerful technique in mapping genes and DNA segments to specific chromosome region. We have been able to release the chromatin fibers from cells arrested at G1 and G2 phases using different drugs and a simple alkaline lysis procedure. We have also demonstrated specific hybridization of fluorescence-labeled probes to single-copy genomic DNA sequences on the free chromatins. Fluorescence in situ hybridization signals have been detected for sequences separated as close as 21 kilobase pairs and as far as 350 kilobase pairs, with excellent correspondence between the observed and expected distances. The resolution of this technique should approach 10 kilobase pairs and its coverage should span millions of base pairs. Therefore, free chromatin mapping can be generally used to study the structure and organization of mammalian genomes.

522 citations


Journal ArticleDOI
TL;DR: It is suggested that a gene dosage effect involving PMP–22 is at least partially responsible for the demyelinating neuropathy seen in CMT1A.
Abstract: Charcot-Marie-Tooth disease type 1A (CMT1A) is an autosomal dominant peripheral neuropathy associated with a large DNA duplication on the short arm of human chromosome 17. The trembler (Tr) mouse serves as a model for CMT1A because of phenotypic similarities and because the Tr locus maps to mouse chromosome 11 in a region of conserved synteny with human chromosome 17. Recently, the peripheral myelin gene Pmp-22 was found to carry a point mutation in Tr mice. We have isolated cDNA and genomic clones for human PMP-22. The gene maps to human chromosome 17p11.2-17p12, is expressed at high levels in peripheral nervous tissue and is duplicated, but not disrupted, in CMT1A patients. Thus, we suggest that a gene dosage effect involving PMP-22 is at least partially responsible for the demyelinating neuropathy seen in CMT1A.

499 citations


Journal ArticleDOI
TL;DR: In wheat, the non-homoeologous, non-dose responsive and dominant behaviour of RAPD products devalues their use as genetic markers for the construction of linkage maps, and the high probability that the amplified fragments derive from repetitive DNA limits theirUse as a source of conventional RFLP probes.
Abstract: An evaluation was made of the use of random amplified polymorphic DNA (RAPD) as a genetic marker system in wheat. Reproducible amplification products were obtained from varietal, homozygous single chromosome recombinant line and wheat/alien addition line genomic DNA with selected primers and rigorously optimized reaction conditions. Factors influencing the RAPD patterns are DNA concentration, Mg2+ concentration, polymerase concentration and denaturing temperature. In wheat, the non-homoeologous, non-dose responsive and dominant behaviour of RAPD products devalues their use as genetic markers for the construction of linkage maps, and the high probability that the amplified fragments derive from repetitive DNA limits their use as a source of conventional RFLP probes. However, RAPD markers will most certainly find many applications in the analysis of genotypes where single chromosomes or chromosome segments are to be manipulated.

451 citations


Journal Article
TL;DR: To show that the input pattern of chromosomal mutations is highly organized relative to the band patterns along human chromosomes, a new term, "metaphase chromatin flavor," is introduced.
Abstract: To show that the input pattern of chromosomal mutations is highly organized relative to the band patterns along human chromosomes, a new term, "metaphase chromatin flavor," is introduced. Five different flavors of euchromatic metaphase bands are cytologically identified along a human ideogram. These are G-bands and, based upon combinations of extreme Alu richness and GC richness, four different R-band flavors. The two flavors with extremely GC-rich components, traditionally called "T-bands," represent only 15% of all bands. However, they contain 65% of mapped genes, 19 of 25 mapped oncogenes, most cancer-associated rearrangements, evolutionary rearrangements, meiotic chiasmata, and X-ray-induced breaks. Flavors with extremely Alu-rich flavors are also involved in melphalan-induced rearrangements, pachytene stretching, and mitotic chiasmata. Frequencies of CpG islands, CCGCCC boxes, retroposon families, and genes are characteristic to each chromatin flavor and will facilitate alignment of genome sequences onto ideograms of chromatin flavor. The influence of chromatin flavor on the evolution of a gene's sequence is so strong that one can infer the flavor of the band in which a gene resides from the sequence of the gene itself. Correlation coefficients for many pairs of mapped genetic variables, while globally high, are quite low within bands of one flavor, implicating a concerted mode of evolution for bands of one chromatin flavor.

340 citations


Journal ArticleDOI
TL;DR: The in situ hybridization results obtained show that the H3 isochore family is localized in two coincident sets of bands of human metaphase chromosomes: telomeric bands and chromomycin A3-positive 4',6-diamidino-2-phenylindole-negative bands, the first step toward a complete compositional map of the human karyotype.
Abstract: Chromosome in situ suppression hybridization has been carried out on human metaphase chromosomes to localize the G+C-richest human DNA fraction (which only represents 3.5% of the genome), as isolated by preparative equilibrium centrifugation in Cs2SO4/3,6-bis(acetatomercurimethyl)-1,4-dioxane density gradient. This fraction essentially corresponds to isochore family H3. The rationale for carrying out this experiment is that this isochore family has, by far, the highest gene concentration, the highest concentration in CpG islands, the highest transcriptional and recombinational activity, and a distinct chromatin structure. The in situ hybridization results obtained show that the H3 isochore family is localized in two coincident sets of bands of human metaphase chromosomes: telomeric bands and chromomycin A3-positive 4',6-diamidino-2-phenylindole-negative bands. This result is the first step toward a complete compositional map of the human karyotype. Because the G+C gradient across isochore families is paralleled by a gene concentration gradient, such a map has structural, functional, and evolutionary relevance.

329 citations


Journal ArticleDOI
TL;DR: PEV has been intensively investigated in the fruitfly Drosophila, where the phenomenon allows a genetic dissection of chromatin components and demonstrates that genetic, molecular and developmental analysis of these genes provides an avenue to the identification of regulatory and structural chromatin Components and hence to fundamental aspects of chromosome structure and function.
Abstract: Variegated phenotypes often result from chromosomal rearrangements that place euchromatic genes next to heterochromatin In such rearrangements, the condensed structure of heterochromatin can spread into euchromatic regions, which then assume the morphology of heterochromatin and become transcriptionally inactive In position-effect variegation (PEV) therefore, gene inactivation results from a change in chromatin structure PEV has been intensively investigated in the fruitfly Drosophila, where the phenomenon allows a genetic dissection of chromatin components Consequently, many genes have been identified which, when mutated, act as dominant modifiers (suppressors or enhancers) of PEV Data available already demonstrate that genetic, molecular and developmental analysis of these genes provides an avenue to the identification of regulatory and structural chromatin components, and hence to fundamental aspects of chromosome structure and function

313 citations


Journal ArticleDOI
TL;DR: Results suggest that mutations in at least four different genes lead to FA, a degree of genetic heterogeneity comparable to that of other DNA repair disorders.
Abstract: Fanconi anaemia (FA) is a DNA repair disorder characterized by cellular hypersensitivity to DNA cross–linking agents and extensive phenotypic heterogeneity. To determine the extent of genetic heterogeneity present in FA, a panel of somatic cell hybrids was constructed using polyethylene glycol–mediated cell fusion. Three new complementation groups were identified, designated FA(B), FA(C) and FA(D), and the gene defective in FA(C) which we have recently cloned was localized to chromosome 9q22.3 through in situ hybridization. These results suggest that mutations in at least four different genes lead to FA, a degree of genetic heterogeneity comparable to that of other DNA repair disorders.

Journal ArticleDOI
TL;DR: Fluorescence in situ hybridization has been used to visualize specific genomic DNA sequences in interphase nuclei and it has been possible to map the replication timing topography of the DNA within and flanking the cystic fibrosis gene locus on chromosome 7.
Abstract: Fluorescence in situ hybridization has been used to visualize specific genomic DNA sequences in interphase nuclei. In normal diploid cells, unreplicated DNA segments give singlet hybridization signals while replicated loci are characterized by doublets. The distribution of these two patterns in unsynchronized cell populations can be used to determine the S phase replication time of any DNA sequence. The validity of this approach was established by analyzing genes whose replication profiles in expressing and non-expressing cells had been determined previously by conventional methods. Using this technique it has been possible to map the replication timing topography of the DNA within and flanking the cystic fibrosis (CF) gene locus on chromosome 7. The gene itself is located within a defined time zone which is approximately 500 kb in length and is under developmental control. It is early replicating in cells which express CF but late replicating in other cell types. These time zones probably represent basic units of chromosome structure.

Journal ArticleDOI
TL;DR: This work used chromosomal in situ suppression hybridization of all human chromosome-specific DNA libraries to "paint" the chromosomes of primates and establish homologies between the human, great ape, and gibbon karyotypes.
Abstract: The homology between hylobatid chromosomes and other primates has long remained elusive. We used chromosomal in situ suppression hybridization of all human chromosome-specific DNA libraries to "paint" the chromosomes of primates and establish homologies between the human, great ape (chimpanzee, gorilla, and orangutan), and gibbon karyotypes (Hylobates lar species group, 2n = 44). The hybridization patterns unequivocally demonstrate the high degree of chromosomal homology and synteny of great ape and human chromosomes. Relative to human, no translocations were detected in great apes, except for the well-known fusion-origin of human chromosome 2 and a 5;17 translocation in the gorilla. In contrast, numerous translocations were detected that have led to the massive reorganization of the gibbon karyotype: the 22 autosomal human chromosomes have been divided into 51 elements to compose the 21 gibbon autosomes. Molecular cytogenetics promises to finally allow hylobatids to be integrated into the overall picture of chromosomal evolution in the primates.

Journal ArticleDOI
TL;DR: Micro-FISH probes (created in less than 24 hours) now make it possible to identify explicitly the chromosome constitution of virtually all cytologically visible chromosome rearrangements.
Abstract: The strategy presented here to identify unequivocally cryptic chromosomal rearrangements has relevance to both prenatal and postnatal cytogenetic analysis as well as the analysis of tumour-associated chromosome rearrangements. Microdissection and in vitro amplification of specific chromosomal regions are performed, followed by labelling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes (Micro-FISH). Micro-FISH probes have been used successfully to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. Micro-FISH probes (created in less than 24 hours) now make it possible to identify explicitly the chromosome constitution of virtually all cytologically visible chromosome rearrangements.

Journal ArticleDOI
TL;DR: The genomic in-situ hybridization method is fast, sensitive, accurate and informative and likely to be of great value for both cytogenetic analysis and in plant breeding programmes.
Abstract: Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Love, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.

Journal ArticleDOI
01 Jul 1992-Genomics
TL;DR: One hundred highly informative simple sequence repeat (SSR) polymorphisms have been isolated and mapped to specific human chromosomes by somatic cell hybrid analysis and at least one SSR was detected on every chromosome.

Journal ArticleDOI
TL;DR: Analysis of the 49 loci mapped showed extreme clustering around the centromere in all four maps, with large ‘gaps’ in the distal chromosome regions, which is interpreted as being due to strong localisation of recombination towards the ends of the wheat and rye chromosomes.
Abstract: Genetic maps of chromosomes 3A, 3B and 3D of wheat and 3R of rye were developed using 22 DNA probes and two isozyme marker systems. Analysis of the 49 loci mapped showed extreme clustering around the centromere in all four maps, with large 'gaps' in the distal chromosome regions, which is interpreted as being due to strong localisation of recombination towards the ends of the wheat and rye chromosomes. In the centromeric regions gene orders are highly conserved between the three wheat genomes and the rye genome. However, the unpredictable behaviour of the DNA clones that map in distal chromosome locations may indicate that the genomes are diverging most rapidly in the regions of higher recombination. A comparison of cDNA and genomic probes showed the latter to be much more efficient for revealing RFLP. Some classes of gDNA clones, i.e. chromosome-specific sequences and those hybridizing in a non-homoeologous manner, were seen to be most polymorphic. Correlations between map locations and RFLP levels showed no clear relationship. In addition to anonymous DNA clones, the locations of known function clones, sedoheptulose-1,7-bisphosphatase (XSbp), carboxypeptidase I (XCxp1) and a bZIP protein (XEmbp), were ascertained along with those for two isozyme loci, Mal-1 and Est-5.

Journal ArticleDOI
TL;DR: Quantitative analyses of total protein extracts from 22 cultivars of bread wheat showed that the presence of either subunit 1Ax1 or 1Ax2*, when compared with a null allele, resulted in an increase in the proportion of HMW subunit protein from ca.
Abstract: A gene encoding the high-molecular-weight (HMW) subunit of glutenin 1Ax1 was isolated from bread wheat cv Hope. Comparison of the deduced amino acid sequence with that previously reported for an allelic subunit, 1Ax2*, showed only minor differences, which were consistent with both subunits being associated with good bread-making quality. Quantitative analyses of total protein extracts from 22 cultivars of bread wheat showed that the presence of either subunit 1Ax1 or 1Ax2*, when compared with a null allele, resulted in an increase in the proportion of HMW subunit protein from ca. 8 to 10% of the total. It is suggested that this quantitative increase in HMW subunit protein may account for the association of 1Ax subunits with good quality.

Journal ArticleDOI
TL;DR: It is shown that numerous deletions, observed in the progeny of a monosomic addition of a chromosome from Triticum cylindricum in wheat, result from single breakpoints and a concomitant loss of distal fragments.
Abstract: Bread wheat (Triticum aestivum L. em Thell) is well suited for cytogenetic analysis because the genome, buffered by polyploidy, can tolerate structurally and numerically engineered chromosomes for analysis over infinite generations. This feature of polyploidy can be used in developing a high-resolution, cytogenetically based physical map of the wheat genome. We show that numerous deletions, observed in the progeny of a monosomic addition of a chromosome from Triticum cylindricum in wheat, result from single breakpoints and a concomitant loss of distal fragments. Breakages occurred in euchromatic and heterochromatic regions. Forty-one deletions for chromosomes 7A, 7B, and 7D, and a set of genetically mapped DNA probes, were used to construct physical maps. Recombination was low in proximal chromosomal regions and very high toward the distal ends. Deletion mapping was more efficient than genetic mapping in resolving the order of proximal loci. Despite variation in size and arm ratio, relative gene position was largely conserved among chromosomes 7A, 7B, and 7D and a consensus group 7 physical map was constructed. Several molecularly tagged chromosome regions (MTCRs) of approximately one to a few million base pairs were identified that may be resolved by long-range mapping of DNA fragments. Thus, a cytogenetically based physical map may be used to integrate chromosome and DNA-based maps. The MTCRs may simplify strategies for cloning of agronomically useful genes despite the genetic complexity and the large genome size of wheat.

Journal ArticleDOI
01 Jul 1992-Genomics
TL;DR: Alu-PCR protocols were optimized for the generation of human DNA probes from yeast strains containing yeast artificial chromosomes (YACs) with human inserts between 100 and 800 kb in size to facilitate the rapid mapping of YAC clones and their use in chromosome analysis at all stages of the cell cycle.

Journal Article
TL;DR: Data indicate that losses of both chromosome 11p and 16q alleles are nonrandom events and suggest that 16q is the location of a third tumor suppressor gene underlying Wilms' tumorigenesis.
Abstract: Loss of heterozygosity studies have been used to identify chromosomal regions which are frequently deleted and thus indicate areas which may harbor tumor suppressor genes. As a result, both the WT1 gene located in chromosome 11p13 and an unidentified gene(s) within chromosome 11p15 have been implicated in Wilms' tumorigenesis. Cytogenetic and linkage studies suggest that additional non-chromosome 11 sites are involved in Wilms' tumor. Because these sites may also involve loss of heterozygosity, loci on 33 autosomal arms were screened for allele loss in a series of Wilms' tumors. We found that in addition to loss on chromosome 11p (11 of 25 informative tumors) there was significant loss on chromosome 16q (9 of 45 informative tumors), while the total frequency of allele loss excluding these loci was low (9 of 426 total informative loci). These data indicate that losses of both chromosome 11p and 16q alleles are nonrandom events and suggest that 16q is the location of a third tumor suppressor gene underlying Wilms' tumorigenesis. The parental origin of the lost chromosome 16q allele was determined in eight sporadic tumors. Alleles of paternal and of maternal origin were each lost in four sporadic tumors indicating that, unlike chromosome 11p, alleles of either parental origin are lost on 16q.

Journal ArticleDOI
TL;DR: Replication R-banding methods can be used in conjunction with nonisotopic, fluorescence in situ hybridization (FISH) to localize cloned probes to specific chromosomal bands on mouse chromosomes to facilitate rapid identification of each chromosome.
Abstract: A technique for replication R- and G-banding of mouse lymphocyte chromosomes was developed, and the replication R-banding pattern was analyzed. Optimal banding patterns were obtained with thymidine- and BrdU-treatment of lymphocytes in the same cell cycle. This produced replication R-band patterns that were the complete reverse of the G-band patterns on all chromosomes. Replication R-banding methods can be used in conjunction with nonisotopic, fluorescence in situ hybridization (FISH) to localize cloned probes to specific chromosomal bands on mouse chromosomes. With these methods the mouse complement factor H gene (cfh) was localized to the terminal portion of the F region of Chromosome 1. Q-banding patterns were also obtained by the replication R-banding method and may be useful for rapid identification of each chromosome.

Journal ArticleDOI
TL;DR: Genetic maps of wheat chromosome 4A and rye chromosome arm 5RL, and the chromosomal locations of 70 sets of isozyme and molecular homoeoloci have been used to further define the structure of wheat chromosomes 4A, 5A and 7B, and rye chromosomes 4R, 5R and 7R are used.
Abstract: Genetic maps of wheat chromosome 4A and rye chromosome arm 5RL, and the chromosomal locations of 70 sets of isozyme and molecular homoeoloci have been used to further define the structure of wheat chromosomes 4A, 5A and 7B, and rye chromosomes 4R, 5R and 7R. We provide evidence, for the first time, which is consistent with the presence of an interstitial segment on 4AL originating from 5AL, and of a segment originally from 5RL on 7RS. The evolutionary origins of the present chromosomes are discussed.

Journal ArticleDOI
TL;DR: In this article, a reverse chromosome painting method is proposed to detect chromosome duplications in short-term blood culture preparations or cell lines by using bivariate flow karyotype analysis.
Abstract: We describe a method, termed reverse chromosome painting, which allows the rapid analysis of the content and breakpoints of aberrant chromosomes. The method involves the sorting of small numbers of the aberrant chromosome from short term blood culture preparations or cell lines by using bivariate flow karyotype analysis. The sorted chromosomes are amplified and biotin labelled enzymatically using a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), the product annealed to metaphase spreads from normal subjects, and hybridisation detected using fluorescence in situ hybridisation (FISH). We show the usefulness of this method for routine clinical cytogenetics by the analysis of cases involving an insertion, a deletion, a translocation, and two cases of a chromosome with additional material of unknown origin. The method has particular application for the rapid resolution of the origin of de novo unbalanced chromosome duplications.

Journal ArticleDOI
21 Aug 1992-Cell
TL;DR: These experiments suggest that alpha-satellite DNA provides the primary sequence information for centromere protein binding and for at least some functional aspect(s) of a mammalian centromeres, playing a role either in kinetochore formation or in sister chromatid apposition.

Journal ArticleDOI
30 Oct 1992-Cell
TL;DR: It is concluded that the Y-specific region of the mouse Y chromosome long arm includes information essential for the normal development of the sperm head.

Journal ArticleDOI
TL;DR: RFLP analysis showed that the gene is linked to a single-copy DNA clone, RG28, on chromosome 8, at a distance of 4.5 cM, suggesting the availability of a linked DNA marker may facilitate early selection for the aroma gene in rice breeding programs.
Abstract: We report here the identification of a DNA marker closely linked to a gene for aroma in rice. The DNA marker was identified by testing 126 mapped rice genomic, cDNA, and oat cDNA, clones as hybridization probes against Southern blots, consisting of DNA from a pair of nearly isogenic lines (NILs) with or without the aroma gene. Chromosomal segments introgressed from the donor genome were distinguished by RFLPs between the NILs. Linkage association of the clone with the gene was verified using an F3 segregating for aroma. Cosegregation of the scented phenotype and donor-derived allele indicated the presence of linkage between the DNA marker and the gene. RFLP analysis showed that the gene is linked to a single-copy DNA clone, RG28, on chromosome 8, at a distance of 4.5 cM. The availability of a linked DNA marker may facilitate early selection for the aroma gene in rice breeding programs.

Journal ArticleDOI
TL;DR: The chromosomes of 12 bovid species were harvested from fibroblast cultures after incorporation of bromodeoxyuridine into early replicating DNA and the commonness of monobrachially homologous biarmed chromosomes among some bovids suggested that reproductive isolation and speciation in some instances might have resulted from centric fusion events.
Abstract: The chromosomes of 12 bovid species were harvested from fibroblast cultures after incorporation of bromodeoxyuridine into early replicating DNA. Q-band karyotypes were constructed, and, when possible, autosomal arms were numbered according to the cattle standard karyotype. Diploid chromosome number ranged from 30 to 60, yet, based on band similarity, chromosome-arm homologies were extensive. Employing the cattle karyotype as the standard, autosomal-arm differences indicative of possible syntenic disruption were noted for only chromosomes 3, 9, and 14. While chromosome-arm homologies were extensive, shared homologous biarmed chromosomes were rare. The commonness of monobrachially homologous biarmed chromosomes among some bovids (e.g., Antilopinae) suggested that reproductive isolation and speciation in some instances might have resulted from centric fusion events.

Journal ArticleDOI
TL;DR: The observation of apparent non-mosaic 45,X chromosomal complements in liveborn individuals with Turner syndrome does not contradict the hypothesis that some degree of mosaicism is necessary for survival in early pregnancy, and the findings suggest that in vivo selection of structurally altered sex chromosomes exists.
Abstract: Cytogenetic and molecular genetic findings in 91 patients with Turner syndrome are reported. In 87 patients, chromosome studies were carried out both in lymphocyte and fibroblast cultures. Mosaicism was demonstrated in 58 of these patients (66.7%), whereas only 18 (20.7%) were apparent non-mosaic 45,X, and 11 patients (12.6%) showed non-mosaic structural aberrations of the X chromosome. Among the mosaic cases 16 (18.4% of all patients) displayed a second cell line containing small marker chromosomes. The association of Y-specific chromosomal material with the presence of marker chromosomes was demonstrated in 6 out of 7 mixoploid fibroblast cell lines by polymerase chain reaction amplification and by Southern-blot analysis. The observation of ring formation and morphological variability in vivo and in vitro, and the continous reduction in the percentage of cells containing marker chromosomes in longterm cultivation experiments indicated an increased instability of marker chromosomes. The findings suggest that in vivo selection of structurally altered sex chromosomes exists. Thus, the observation of apparent non-mosaic 45,X chromosomal complements in liveborn individuals with Turner syndrome does not contradict the hypothesis that some degree of mosaicism is necessary for survival in early pregnancy.

Journal ArticleDOI
TL;DR: Increased methylation is consistent in small-cell lung carcinoma DNA at two 3p loci that are constantly reduced to homozygosity in this tumor, but it is not seen in colon cancer DNA, in which these loci are infrequently structurally altered.
Abstract: Regional increases in DNA methylation occur in normally unmethylated cytosine-rich areas in neoplastic cells. These changes could potentially alter chromatin structure to inactivate gene transcription or generate DNA instability. We now show that, in human lung and colon cancer DNA, hypermethylation of such a region consistently occurs on chromosome 17p in an area that is frequently reduced to homozygosity in both tumor types. Over the progression stages of colon neoplasia, this methylation change increases in extent and precedes the allelic losses on 17p that are characteristic of colon carcinomas. We also show on chromosome 3p that regional hypermethylation may nonrandomly accompany chromosome changes in human neoplasia. Increased methylation is consistent in small-cell lung carcinoma DNA at two 3p loci that are constantly reduced to homozygosity in this tumor, but it is not seen in colon cancer DNA, in which these loci are infrequently structurally altered.