scispace - formally typeset
Search or ask a question
Topic

Chromosome

About: Chromosome is a research topic. Over the lifetime, 17538 publications have been published within this topic receiving 660077 citations. The topic is also known as: chromosomes & GO:0005694.


Papers
More filters
Journal ArticleDOI
TL;DR: Mammalian genomes contain numerous regulatory DNA sites with unknown target genes, and cell-specific long-range DNA contacts can cause variegated expression, demonstrating genetically that mammalian trans activation is possible, but suggests that it will be rare.
Abstract: Mammalian genomes contain numerous regulatory DNA sites with unknown target genes. We used mice with an extra β-globin locus control region (LCR) to investigate how a regulator searches the genome for target genes. We find that the LCR samples a restricted nuclear subvolume, wherein it preferentially contacts genes controlled by shared transcription factors. No contacted gene is detectably upregulated except for endogenous β-globin genes located on another chromosome. This demonstrates genetically that mammalian trans activation is possible, but suggests that it will be rare. Trans activation occurs not pan-cellularly, but in 'jackpot' cells enriched for the interchromosomal interaction. Therefore, cell-specific long-range DNA contacts can cause variegated expression.

152 citations

Journal ArticleDOI
TL;DR: Observed changes in Drosophila nurse cell chromosomes suggest that euchromatin begins to condense during late S phase and that nurse cell polytene chromosome structure is controlled by regulating whether events characteristic of late S and M phase are incorporated or skipped within a given endocycle.
Abstract: Polytene chromosomes exhibit intricate higher order chromatin structure that is easily visualized due to their precisely aligned component strands. However, it remains unclear if the same factors determine chromatin organization in polyploid and diploid cells. We have analyzed one such factor, the cell cycle, by studying changes in Drosophila nurse cell chromosomes throughout the 10 to 12 endocycles of oogenesis. We find that nurse cells undergo three distinct types of endocycle whose parameters are correlated with chromosome behavior. The first four endocycles support complete DNA replication; poorly banded polytene euchromatin progressively condenses during the late S phases to produce blob-like chromosomes. During the unique fifth endocycle, an incomplete late S phase is followed by a mitosis-like state during which the 64C chromosomes dissociate into 32 chromatid pairs held together by unreplicated regions. All the subsequent endocycles lack any late S phase; during these cycles a new polytene chromosome grows from each 2C chromatid pair to generate 32-ploid polytene nuclei. These observations suggest that euchromatin begins to condense during late S phase and that nurse cell polytene chromosome structure is controlled by regulating whether events characteristic of late S and M phase are incorporated or skipped within a given endocycle.

152 citations

Journal ArticleDOI
TL;DR: All the physical linkage groups constituting the genome of Leishmania infantum have been identified for the first time by hybridization of specific DNA probes to pulsed field gradient-separated chromosomes, suggesting that conservation of the chromosome structure may be critical for this human pathogen.
Abstract: All the physical linkage groups constituting the genome of Leishmania infantum have been identified for the first time by hybridization of specific DNA probes to pulsed field gradient-separated chromosomes. The numerous co-migrating chromosomes were individualised using the distinctive size polymorphisms which occur among strains of the L. infantum/L. donovani complex as a tool. A total of 244 probes, consisting of 41 known genes, 66 expressed sequence tags (ESTs) and 137 anonymous DNA sequences, were assigned to a specific linkage group. We show that this genome comprises 36 chromosomes ranging in size from 0.35 to -3 Mb. This information enabled us to compare the genome structure of L. infantum with those of the three other main Leishmania species that infect man in the Old World, L. major, L. tropica and L. aethiopica. The linkage groups were consistently conserved in all species examined. This result is in striking contrast to the large genetic distances that separate these species and suggests that conservation of the chromosome structure may be critical for this human pathogen. Finally, the high density of markers obtained during the present study (with a mean of 1 marker/130 kb) will speed up the construction of a detailed physical map that would facilitate the genetic analysis of this parasite, for which no classical genetics is available.

152 citations

Journal ArticleDOI
TL;DR: The results indicate that T-DNA insertion lines--even those that exhibit straightforward genetic behavior--may contain an unexpectedly high frequency of rearrangements that can interfere with reverse genetic analyses and provide misleading information about the molecular basis of mutant phenotypes.
Abstract: T-DNA insertion mutants have become a valuable resource for studies of gene function in Arabidopsis. In the course of both forward and reverse genetic projects, we have identified novel interchromosomal rearrangements in two Arabidopsis T-DNA insertion lines. Both rearrangements were unilateral translocations associated with the left borders of T-DNA inserts that exhibited normal Mendelian segregation. In one study, we characterized the embryo-defective 88 mutation. Although emb 88 had been mapped to chromosome I, molecular analysis of DNA adjacent to the T-DNA left border revealed sequence from chromosome V. Simple sequence length polymorphism mapping of the T-DNA insertion demonstrated that a >40-kbp region of chromosome V had inserted with the T-DNA into the emb 88 locus on chromosome I. A similar scenario was observed with a prospective T-DNA knockout allele of the LIGHT-REGULATED RECEPTOR PROTEIN KINASE ( LRRPK ) gene. Whereas wild-type LRRPK is on lower chromosome IV, mapping of the T-DNA localized the disrupted LRRPK allele to chromosome V. In both these cases, the sequence of a single T-DNA-flanking region did not provide an accurate picture of DNA disruption because flanking sequences had duplicated and inserted, with the T-DNA, into other chromosomal locations. Our results indicate that T-DNA insertion lines—even those that exhibit straightforward genetic behavior—may contain an unexpectedly high frequency of rearrangements. Such duplication/translocations can interfere with reverse genetic analyses and provide misleading information about the molecular basis of mutant phenotypes. Simple mapping and polymerase chain reaction methods for detecting such rearrangements should be included as a standard step in T-DNA mutant analysis.

152 citations

Journal ArticleDOI
TL;DR: The process of centromere repositioning during primate chromosomal evolution may depend on the acquisition and subsequent fixation of neocentromeres, and this remarkable plasticity in the position of centromeres has important implications for human cytogenetics and chromosome evolution.
Abstract: Neocentromeres are rare human chromosomal aberrations where a new centromere has formed in a previously non-centromeric location. The emergence of new centromeres on a chromosome that already contains an endogenous centromere would be a highly deleterious event which would lead to dicentricity and mitotic instability. Nonetheless, neocentromere formation appears to provide a mechanism for the acquisition of a new centromere. Neocentromeres are most often observed on chromosomal arm fragments that have separated from an endogenous centromere, and therefore actually lead to mitotic stability of what would have been an acentric fragment. Neocentromeres have recently also been observed on apparently unrearranged chromosomes where the endogenous centromere has been inactivated. Furthermore, the process of centromere repositioning during primate chromosomal evolution may depend on the acquisition and subsequent fixation of neocentromeres. This remarkable plasticity in the position of centromeres has important implications for human cytogenetics and chromosome evolution, and provides an opportunity to further our understanding of the process of centromere formation and structure.

152 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
88% related
Mutation
45.2K papers, 2.6M citations
87% related
Locus (genetics)
42.7K papers, 2M citations
86% related
Exon
38.3K papers, 1.7M citations
86% related
Mitosis
26.2K papers, 1.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023862
20221,198
2021368
2020359
2019365