scispace - formally typeset
Search or ask a question
Topic

Chromosome

About: Chromosome is a research topic. Over the lifetime, 17538 publications have been published within this topic receiving 660077 citations. The topic is also known as: chromosomes & GO:0005694.


Papers
More filters
Journal ArticleDOI
TL;DR: A multicolor fluorescence in situ hybridization procedure was developed that identifies meiotic pachytene, late prophase I, and metaphase I chromosomes and could facilitate the study of chromosomal structure and behavior and be adapted for other plant species.
Abstract: Study of the maize (Zea mays L.) somatic chromosomes (2n = 20) has been difficult because of a lack of distinguishing characteristics. To identify all maize chromosomes, a multicolor fluorescence in situ hybridization procedure was developed. The procedure uses tandemly repeated DNA sequences to generate a distinctive banding pattern for each of the 10 chromosomes. Fluorescence in situ hybridization screening trials of nonsubtracted or subtracted PCR libraries resulted in the isolation of microsatellite 1-26-2, subtelomeric 4-12-1, and 5S rRNA 2-3-3 clones. These three probes, plus centromeric satellite 4 (Cent4), centromeric satellite C (CentC), knob, nucleolus-organizing region (NOR), pMTY9ER telomere-associated sequence, and tandemly repeated DNA sequence 1 (TR-1) were used as a mixture for hybridization to root-tip chromosomes. All 10 chromosomes were identified by the banding and color patterns in the 14 examined lines. There was significant quantitative variation among lines for the knob, microsatellite, TR-1, and CentC signals. The same probe mixture identifies meiotic pachytene, late prophase I, and metaphase I chromosomes. The procedure could facilitate the study of chromosomal structure and behavior and be adapted for other plant species.

465 citations

Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: It is shown that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere-specific histone CENH3 (called CENP-A in human), which is universal in eukaryotes and may be extended to produce haploids in any plant species.
Abstract: Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.

465 citations

Journal ArticleDOI
08 Apr 1994-Science
TL;DR: The movement of chromosomes that precedes meiosis was observed in living cells of fission yeast by fluorescence microscopy and the clustering of telomeres is reminiscent of the bouquet structure of meiotic-prophase chromosomes observed in higher eukaryotes, which suggests that telomere perform specific functions required for premeiotic chromosomal events generally in eucaryotes.
Abstract: The movement of chromosomes that precedes meiosis was observed in living cells of fission yeast by fluorescence microscopy. Further analysis by in situ hybridization revealed that the telomeres remain clustered at the leading end of premeiotic chromosome movement, unlike mitotic chromosome movement in which the centromere leads. Once meiotic chromosome segregation starts, however, centromeres resume the leading position in chromosome movement, as they do in mitosis. Although the movement of the telomere first has not been observed before, the clustering of telomeres is reminiscent of the bouquet structure of meiotic-prophase chromosomes observed in higher eukaryotes, which suggests that telomeres perform specific functions required for premeiotic chromosomal events generally in eukaryotes.

465 citations

Journal ArticleDOI
01 Jan 1987-Nature
TL;DR: The data show loss of alleles of chromosome 3p markers in tumour DNA of all nine patients supporting the hypothesis that this region contributes to tumorigenesis in SCLC.
Abstract: Specific chromosomal deletions sometimes associated with tumours such as retinoblastoma (chromosome 13q14)1 and Wilm's tumour (chromosome 11p13)2 have led to the hypothesis that recessive genes may be involved in tumorigenesis3. This hypothesis is supported by demonstration of allele loss specific for these regions using polymorphic DNA markers4–9 and by the isolation of a complementary DNA clone for the retinoblastoma gene10. A cytogenetic deletion in chromosome 3 (p14–p23) was reported in small-cell lung cancer (SCLC) by Whang-Peng et al11,12. At least one homologue of chromosome 3 was affected in the majority of SCLC tumours; however, the multiple chromosomal changes seen presented the possibility that chromosome 3 was rearranged, not deleted. We used polymorphic DNA probes for chromosome 3p and compared tumour and constitutional genotypes of nine SCLC patients. Our data show loss of alleles of chromosome 3p markers in tumour DNA of all nine patients supporting the hypothesis that this region contributes to tumorigenesis in SCLC.

463 citations

Journal ArticleDOI
TL;DR: Transcriptional up-regulation of genes in the major histocompatibility complex by interferon-gamma led to an increase in the frequency with which this large gene cluster was found on an external chromatin loop, consistent with an association between large-scale chromatin organization of specific genomic regions and their transcriptional status.
Abstract: The large-scale chromatin organization of the major histocompatibility complex and other regions of chromosome 6 was studied by three-dimensional image analysis in human cell types with major differences in transcriptional activity. Entire gene clusters were visualized by fluorescence in situ hybridization with multiple locus-specific probes. Individual genomic regions showed distinct configurations in relation to the chromosome 6 terrritory. Large chromatin loops containing several megabases of DNA were observed extending outwards from the surface of the domain defined by the specific chromosome 6 paint. The frequency with which a genomic region was observed on an external chromatin loop was cell type dependent and appeared to be related to the number of active genes in that region. Transcriptional up-regulation of genes in the major histocompatibility complex by interferon-gamma led to an increase in the frequency with which this large gene cluster was found on an external chromatin loop. Our data are consistent with an association between large-scale chromatin organization of specific genomic regions and their transcriptional status.

462 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
88% related
Mutation
45.2K papers, 2.6M citations
87% related
Locus (genetics)
42.7K papers, 2M citations
86% related
Exon
38.3K papers, 1.7M citations
86% related
Mitosis
26.2K papers, 1.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023862
20221,198
2021368
2020359
2019365