Topic
Ciona intestinalis
About: Ciona intestinalis is a research topic. Over the lifetime, 1406 publications have been published within this topic receiving 48490 citations.
Papers published on a yearly basis
Papers
More filters
[...]
United States Department of Energy1, Kyoto University2, Marine Biological Laboratory3, University of Queensland4, Stanford University5, University of California, Berkeley6, McGill University7, National Institute of Genetics8, Aix-Marseille University9, Dalhousie University10, University of Tokyo11, Tokyo Metropolitan University12, Tohoku University13, University of South Florida14, Hokkaido University15, Stazione Zoologica Anton Dohrn16, IBM17, University of Maryland, College Park18, University of California, San Francisco19, University of Edinburgh20, Oak Ridge National Laboratory21, Los Alamos National Laboratory22
TL;DR: A draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis, is generated, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development.
Abstract: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
1,540 citations
[...]
TL;DR: In this paper, a voltage-sensor-containing phosphatase (Ci-VSP) was proposed, which displays channel-like gating currents and directly translates changes in membrane potential into the turnover of phosphoinositides.
Abstract: Changes in membrane potential affect ion channels and transporters, which then alter intracellular chemical conditions. Other signalling pathways coupled to membrane potential have been suggested1,2,3 but their underlying mechanisms are unknown. Here we describe a novel protein from the ascidian Ciona intestinalis that has a transmembrane voltage-sensing domain homologous to the S1–S4 segments of voltage-gated channels and a cytoplasmic domain similar to phosphatase and tensin homologue. This protein, named C. intestinalis voltage-sensor-containing phosphatase (Ci-VSP), displays channel-like ‘gating’ currents and directly translates changes in membrane potential into the turnover of phosphoinositides. The activity of the phosphoinositide phosphatase in Ci-VSP is tuned within a physiological range of membrane potential. Immunocytochemical studies show that Ci-VSP is expressed in Ciona sperm tail membranes, indicating a possible role in sperm function or morphology. Our data demonstrate that voltage sensing can function beyond channel proteins and thus more ubiquitously than previously realized.
572 citations
[...]
TL;DR: Cell lineages during embryogenesis of the ascidian Halocynthia roretzi were analyzed up until the stage where each blastomere was fated to be only a single tissue type by intracellular injection of horseradish peroxidase using the iontophoretic injection method.
Abstract: Cell lineages during embryogenesis of the ascidian Halocynthia roretzi were analyzed up until the stage where each blastomere was fated to be only a single tissue type (i.e., the tissue restricted stage) by intracellular injection of horseradish peroxidase using the iontophoretic injection method. Initially, the developmental fates of all blastomeres of the 64-cell stage embryo were examined, and thereafter, only the fates of daughter blastomeres of those blastomeres that were not tissue restricted at the 64-cell stage were traced. The developmental fates of blastomeres were highly invariant except for two candidates for "equivalence groups" (J. Kimble, J. Sulston, and J. White (1979). In "Cell Lineage, Stem Cells and Cell Determination," pp. 59-68. Elsevier, Amsterdam/New York), in which cellular interaction is suggested to be involved in the specification of the fates. The right and left a8.25 cells gave rise to the otolith and ocellus, and the right and left b8.17 cells gave rise to the spinal cord and endodermal strand in a complementary manner. No fixed relationship existed between the position of the blastomere and its derivative. Most restrictions of cell fates occurred early in cleavage. The numbers of blastomeres which generated a single type of tissue were 44 at the 64-cell stage and 94 at the 110-cell stage. Eight pairs of blastomeres had not yet become tissue restricted by the 110-cell stage. Almost complete lineages of epidermis, nervous system, muscle, mesenchyme, notochord, and endodermal tissues were described, and a fate map was constructed for the blastula. For certain tissues, the primordial cells occupied two different regions. Supplementary investigations of the lineage of muscle cells were also performed on embryos of another species, Ciona intestinalis.
541 citations
[...]
TL;DR: Evidence is presented that the embryo of the ascidian, Ciona intestinalis, is an easily manipulated system for investigating the establishment of basic chordate tissues and organs, thereby raising the possibility that the Notch signaling pathway plays a role in notochord differentiation.
Abstract: We present evidence that the embryo of the ascidian, Ciona intestinalis, is an easily manipulated system for investigating the establishment of basic chordate tissues and organs. Ciona has a small genome, and simple, well-defined embyronic lineages. Here, we examine the regulatory mechanisms underlying the differentiation of the notochord. Particular efforts center on the regulation of a notochord-specific Ciona Brachyury gene (Ci-Bra). An electroporation method was devised for the efficient incorporation of transgenic DNA into Ciona embryos. This method permitted the identification of a minimal, 434 bp enhancer from the Ci-Bra promoter region that mediates the notochord-restricted expression of both GFP and lacZ reporter genes. This enhancer contains a negative control region that excludes Ci-Bra expression from inappropriate embryonic lineages, including the trunk mesenchyme and tail muscles. Evidence is presented that the enhancer is activated by a regulatory element which is closely related to the recognition sequence of the Suppressor of Hairless transcription factor, thereby raising the possibility that the Notch signaling pathway plays a role in notochord differentiation. We discuss the implications of this analysis with regard to the evolutionary conservation of integrative enhancers, and the subdivision of the axial and paraxial mesoderm in vertebrates.
429 citations
[...]
TL;DR: The genomewide approach to networks of developmental genes in Ciona embryos is discussed and transcription factor genes and signal transduction genes involved in each of the downstream processes can be deduced comprehensively using the present approach.
Abstract: Achieving a real understanding of animal development obviously requires a comprehensive rather than partial identification of the genes working in each developmental process. Recent decoding of genome sequences will enable us to perform such studies. An ascidian, Ciona intestinalis, one of the animals whose genome has been sequenced, is a chordate sharing a basic body plan with vertebrates, although its genome contains less paralogs than are usually seen in vertebrates. In the present study, we discuss the genomewide approach to networks of developmental genes in Ciona embryos. We focus on transcription factor genes and some major groups of signal transduction genes. These genes are comprehensively listed and examined with regard to their embryonic expression by in situ hybridization (http://ghost.zool.kyoto-u.ac.jp/tfst.html). The results revealed that 74% of the transcription factor genes are expressed maternally and that 56% of the genes are zygotically expressed during embryogenesis. Of these, 34% of the transcription factor genes are expressed both maternally and zygotically. The number of zygotically expressed transcription factor genes increases gradually during embryogenesis. As an example, and taking advantage of this comprehensive description of gene expression profiles, we identified transcription factor genes and signal transduction genes that are expressed at the early gastrula stage and that work downstream of beta-catenin, FoxD and/or Fgf9/16/20. Because these three genes are essential for ascidian endomesoderm specification, transcription factor genes and signal transduction genes involved in each of the downstream processes can be deduced comprehensively using the present approach.
369 citations