scispace - formally typeset
Search or ask a question
Topic

Ciphertext

About: Ciphertext is a research topic. Over the lifetime, 11956 publications have been published within this topic receiving 194319 citations. The topic is also known as: cyphertext.


Papers
More filters
Posted Content
TL;DR: In this paper, a Hierarchical Identity Based Encryption (HIBE) scheme is presented, where the ciphertext consists of just three group elements and decryption requires only two bilinear map computations, regardless of the hierarchy depth.
Abstract: We present a Hierarchical Identity Based Encryption (HIBE) system where the ciphertext consists of just three group elements and decryption requires only two bilinear map computations, regardless of the hierarchy depth. Encryption is as ecient as in other HIBE systems. We prove that the scheme is selective-ID secure in the standard model and fully secure in the random oracle model. Our system has a number of applications: it gives very ecient forward secure public key and identity based cryptosystems (with short ciphertexts), it converts the NNL broadcast encryption system into an ecient public key broadcast system, and it provides an ecient mechanism for encrypting to the future. The system also supports limited delegation where users can be given restricted private keys that only allow delegation to bounded depth. The HIBE system can be modified to support sublinear size private keys at the cost of some ciphertext expansion.

1,076 citations

Book ChapterDOI
03 Dec 2017
TL;DR: A method to construct a homomorphic encryption scheme for approximate arithmetic that supports an approximate addition and multiplication of encrypted messages, together with a new rescaling procedure for managing the magnitude of plaintext.
Abstract: We suggest a method to construct a homomorphic encryption scheme for approximate arithmetic. It supports an approximate addition and multiplication of encrypted messages, together with a new rescaling procedure for managing the magnitude of plaintext. This procedure truncates a ciphertext into a smaller modulus, which leads to rounding of plaintext. The main idea is to add a noise following significant figures which contain a main message. This noise is originally added to the plaintext for security, but considered to be a part of error occurring during approximate computations that is reduced along with plaintext by rescaling. As a result, our decryption structure outputs an approximate value of plaintext with a predetermined precision.

1,019 citations

Book ChapterDOI
15 May 2011
TL;DR: In this paper, the authors proposed a multi-authority attribute-based encryption (ABE) system, where any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters.
Abstract: We propose a Multi-Authority Attribute-Based Encryption (ABE) system. In our system, any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. A party can simply act as an ABE authority by creating a public key and issuing private keys to different users that reflect their attributes. A user can encrypt data in terms of any boolean formula over attributes issued from any chosen set of authorities. Finally, our system does not require any central authority. In constructing our system, our largest technical hurdle is to make it collusion resistant. Prior Attribute-Based Encryption systems achieved collusion resistance when the ABE system authority "tied" together different components (representing different attributes) of a user's private key by randomizing the key. However, in our system each component will come from a potentially different authority, where we assume no coordination between such authorities. We create new techniques to tie key components together and prevent collusion attacks between users with different global identifiers. We prove our system secure using the recent dual system encryption methodology where the security proof works by first converting the challenge ciphertext and private keys to a semi-functional form and then arguing security. We follow a recent variant of the dual system proof technique due to Lewko and Waters and build our system using bilinear groups of composite order. We prove security under similar static assumptions to the LW paper in the random oracle model.

1,005 citations

Book ChapterDOI
22 May 2005
TL;DR: In this article, a Hierarchical Identity Based Encryption (HIBE) scheme is presented, where the ciphertext consists of just three group elements and decryption requires only two bilinear map computations, regardless of the hierarchy depth.
Abstract: We present a Hierarchical Identity Based Encryption (HIBE) system where the ciphertext consists of just three group elements and decryption requires only two bilinear map computations, regardless of the hierarchy depth. Encryption is as efficient as in other HIBE systems. We prove that the scheme is selective-ID secure in the standard model and fully secure in the random oracle model. Our system has a number of applications: it gives very efficient forward secure public key and identity based cryptosystems (with short ciphertexts), it converts the NNL broadcast encryption system into an efficient public key broadcast system, and it provides an efficient mechanism for encrypting to the future. The system also supports limited delegation where users can be given restricted private keys that only allow delegation to bounded depth. The HIBE system can be modified to support sublinear size private keys at the cost of some ciphertext expansion.

985 citations

Book ChapterDOI
01 Jun 2010
TL;DR: Encryption-decryption is the most ancient cryptographic activity, but its nature has deeply changed with the invention of computers, because the cryptanalysis (the activity of the third person, the eavesdropper, who aims at recovering the message) can use their power.
Abstract: Introduction A fundamental objective of cryptography is to enable two persons to communicate over an insecure channel (a public channel such as the internet) in such a way that any other person is unable to recover their message (called the plaintext ) from what is sent in its place over the channel (the ciphertext ). The transformation of the plaintext into the ciphertext is called encryption , or enciphering. Encryption-decryption is the most ancient cryptographic activity (ciphers already existed four centuries b.c.), but its nature has deeply changed with the invention of computers, because the cryptanalysis (the activity of the third person, the eavesdropper, who aims at recovering the message) can use their power. The encryption algorithm takes as input the plaintext and an encryption key K E , and it outputs the ciphertext. If the encryption key is secret, then we speak of conventional cryptography , of private key cryptography , or of symmetric cryptography . In practice, the principle of conventional cryptography relies on the sharing of a private key between the sender of a message (often called Alice in cryptography) and its receiver (often called Bob). If, on the contrary, the encryption key is public, then we speak of public key cryptography . Public key cryptography appeared in the literature in the late 1970s.

943 citations


Network Information
Related Topics (5)
Cryptography
37.3K papers, 854.5K citations
95% related
Encryption
98.3K papers, 1.4M citations
94% related
Authentication
74.7K papers, 867.1K citations
89% related
Key (cryptography)
60.1K papers, 659.3K citations
88% related
Server
79.5K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023317
2022676
2021636
20201,068
20191,496