scispace - formally typeset
Search or ask a question
Topic

Circuit design

About: Circuit design is a research topic. Over the lifetime, 20142 publications have been published within this topic receiving 274669 citations.


Papers
More filters
Book
01 Jan 1996
TL;DR: In this paper, the authors present a survey of the state-of-the-art in the field of digital integrated circuits, focusing on the following: 1. A Historical Perspective. 2. A CIRCUIT PERSPECTIVE.
Abstract: (NOTE: Each chapter begins with an Introduction and concludes with a Summary, To Probe Further, and Exercises and Design Problems.) I. THE FABRICS. 1. Introduction. A Historical Perspective. Issues in Digital Integrated Circuit Design. Quality Metrics of a Digital Design. 2. The Manufacturing Process. The CMOS Manufacturing Process. Design Rules-The Contract between Designer and Process Engineer. Packaging Integrated Circuits. Perspective-Trends in Process Technology. 3. The Devices. The Diode. The MOS(FET) Transistor. A Word on Process Variations. Perspective: Technology Scaling. 4. The Wire. A First Glance. Interconnect Parameters-Capitance, Resistance, and Inductance. Electrical Wire Models. SPICE Wire Models. Perspective: A Look into the Future. II. A CIRCUIT PERSPECTIVE. 5. The CMOS Inverter. The Static CMOS Inverter-An Intuitive Perspective. Evaluating the Robustness of the CMOS Inverter: The Static Behavior. Performance of CMOS Inverter: The Dynamic Behavior. Power, Energy, and Energy-Delay. Perspective: Technology Scaling and Its Impact on the Inverter Metrics. 6. Designing Combinational Logic Gates in CMOS. Static CMOS Design. Dynamic CMOS Design. How to Choose a Logic Style? Perspective: Gate Design in the Ultra Deep-Submicron Era. 7. Designing Sequential Logic Circuits. Timing Metrics for Sequential Circuits. Classification of Memory Elements. Static Latches and Registers. Dynamic Latches and Registers. Pulse Registers. Sense-Amplifier Based Registers. Pipelining: An Approach to Optimize Sequential Circuits. Non-Bistable Sequential Circuits. Perspective: Choosing a Clocking Strategy. III. A SYSTEM PERSPECTIVE. 8. Implementation Strategies for Digital ICS. From Custom to Semicustom and Structured-Array Design Approaches. Custom Circuit Design. Cell-Based Design Methodology. Array-Based Implementation Approaches. Perspective-The Implementation Platform of the Future. 9. Coping with Interconnect. Capacitive Parasitics. Resistive Parasitics. Inductive Parasitics. Advanced Interconnect Techniques. Perspective: Networks-on-a-Chip. 10. Timing Issues in Digital Circuits. Timing Classification of Digital Systems. Synchronous Design-An In-Depth Perspective. Self-Timed Circuit Design. Synchronizers and Arbiters. Clock Synthesis and Synchronization Using a Phased-Locked Loop. Future Directions and Perspectives. 11. Designing Arithmetic Building Blocks. Datapaths in Digital Processor Architectures. The Adder. The Multiplier. The Shifter. Other Arithmetic Operators. Power and Spped Trade-Offs in Datapath Structures. Perspective: Design as a Trade-off. 12. Designing Memory and Array Structures. The Memory Core. Memory Peripheral Circuitry. Memory Reliability and Yield. Power Dissipation in Memories. Case Studies in Memory Design. Perspective: Semiconductor Memory Trends and Evolutions. Problem Solutions. Index.

2,744 citations

Book
01 Jan 1987
TL;DR: In this article, the authors present a simple MOS LARGE-SIGNAL MODEL (SPICE Level 1) and a small-signal model for the MOS TRANSISTOR.
Abstract: 1.1 ANALOG INTEGRATED CIRCUIT DESIGN 1.2 NOTATION, SYMBOLOGY AND TERMINOLOGY 1.3 ANALOG SIGNAL PROCESSING 1.4 EXAMPLE OF ANALOG VLSI MIXED-SIGNAL CIRCUIT DESIGN 2.1 BASIC MOS SEMICONDUCTOR FABRICATION PROCESSES 2.2 THE PN JUNCTION 2.3 THE MOS TRANSISTOR 2.4 PASSIVE COMPONENTS 2.5 OTHER CONSIDERATIONS OF CMOS TECHNOLOGY 3.1 SIMPLE MOS LARGE-SIGNAL MODEL (SPICE LEVEL 1) 3.2 OTHER MOS LARGE-SIGNAL MODEL PARAMETERS 3.3 SMALL-SIGNAL MODEL FOR THE MOS TRANSISTOR 3.4 COMPUTER SIMULATION MODELS 3.5 SUBTHRESHOLD MOS MODEL 3.6 SPICE SIMULATION OF MOS CIRCUITS 4.1 MOS SWITCH 4.2 MOS DIODE/ACTIVE RESISTOR 4.3 CURRENT SINKS AND SOURCES 4.4 CURRENT MIRRORS 4.5 CURRENT AND VOLTAGE REFERENCES 4.6 BANDGAP REFERENCE 5.1 INVERTERS 5.2 DIFFERENTIAL AMPLIFIERS 5.3 CASCODE AMPLIFIERS 5.4* CURRENT AMPLIFIERS 5.5* OUTPUT AMPLIFIERS/BUFFERS 6.1 DESIGN OF CMOS OP AMPS 6.2 COMPENSATION OF OP AMP 6.3 DESIGN OF TWO-STAGE OP AMPS 6.4 POWER-SUPPLY REJECTION RATIO OF TWO-STAGE OP AMPS 6.5 CASCODE OP AMPS 6.6 SIMULATION AND MEASUREMENT OF OP AMPS 6.7 MACROMODELS FOR OP AMPS 7.1 BUFFERED OP AMPS 7.2 HIGH-SPEED/FREQUENCY OP AMPS 7.3 DIFFERENTIAL-OUTPUT OP AMPS 7.4 MICROPOWER OP AMPS 7.5 LOW NOISE OP AMPS 7.6 LOW VOLTAGE OP AMPS 8.1 CHARACTERIZATION OF A COMPARATOR 8.2 TWO-STAGE, OPEN-LOOP COMPARATOR DESIGN 8.3 OTHER OPEN-LOOP COMPARATORS 8.4 IMPROVING THE PERFORMANCE OF OPEN-LOOP COMPARATORS 8.5 DISCRETE-TIME COMPARATORS 8.6 HIGH-SPEED COMPARATORS APPENDIX A CIRCUIT ANALYSIS FOR ANALOG CIRCUIT DESIGN APPENDIX B INTEGRATED CIRCUIT LAYOUT APPENDIX C CMOS DEVICE CHARACTERIZATION APPENDIX D TIME AND FREQUENCY DOMAIN RELATIONSHIP FOR SECOND-ORDER SYSTEMS

2,741 citations

Book
22 Aug 1997
TL;DR: Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.
Abstract: The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

2,724 citations

Journal ArticleDOI
TL;DR: In this paper, techniques for low power operation are presented which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations to reduce power consumption in CMOS digital circuits while maintaining computational throughput.
Abstract: Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations. An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations. This optimum is achieved by trading increased silicon area for reduced power consumption. >

2,690 citations

Journal ArticleDOI
TL;DR: In this article, a method to determine the small-signal equivalent circuit of FETs is proposed, which consists of a direct determination of both the extrinsic and intrinsic small signal parameters in a low-frequency band.
Abstract: A method to determine the small-signal equivalent circuit of FETs is proposed This method consists of a direct determination of both the extrinsic and intrinsic small-signal parameters in a low-frequency band This method is fast and accurate, and the determined equivalent circuit fits the S-parameters well up to 265 GHz >

1,491 citations


Network Information
Related Topics (5)
Electronic circuit
114.2K papers, 971.5K citations
94% related
Integrated circuit
82.7K papers, 1M citations
92% related
CMOS
81.3K papers, 1.1M citations
91% related
Amplifier
163.9K papers, 1.3M citations
89% related
Transistor
138K papers, 1.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202251
2021322
2020477
2019639
2018627