scispace - formally typeset
Search or ask a question
Topic

Circular polarization

About: Circular polarization is a research topic. Over the lifetime, 15201 publications have been published within this topic receiving 234418 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results show that a non-chiral sample such as a subwavelength circular nanoaperture can produce giant circular dichroism when a vortex beam is used to excite it and can provide a wealth of information about the sample when combined with the control of the total angular momentum of the input field.
Abstract: Circular dichroism, that is, the differential absorption of a system to left and right circularly polarized light, is one of the only techniques capable of providing morphological information of certain samples. In biology, for instance, circular dichroism spectroscopy is widely used to study the structure of proteins. More recently, it has also been used to characterize metamaterials and plasmonic structures. Typically, circular dichorism can only be observed in chiral objects. Here we present experimental results showing that a non-chiral sample such as a subwavelength circular nanoaperture can produce giant circular dichroism when a vortex beam is used to excite it. These measurements can be understood by studying the symmetries of the sample and the total angular momentum that vortex beams carry. Our results show that circular dichroism can provide a wealth of information about the sample when combined with the control of the total angular momentum of the input field.

96 citations

Journal ArticleDOI
TL;DR: A switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system that exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost.
Abstract: We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

96 citations

Journal ArticleDOI
TL;DR: In this article, high precision measurements of polarization rotations in the frequency range from 0.1 to 2.5 THz using a polarization modulation technique are presented. But the precision of these measurements depends on the angle of the rotation of the polarizer.
Abstract: We present high precision measurements of polarization rotations in the frequency range from 0.1 to 2.5 THz using a polarization modulation technique. A motorized stage rotates a polarizer at ∼ 80 Hz, and the resulting modulation of the polarization is measured by a lock-in technique. We achieve an accuracy of 0.050° (900 μrad) and a precision of 0.02° (350 μrad) for small rotation angles. A detailed mathematical description of the technique is presented, showing its ability to fully characterize elliptical polarizations from 0.1 to 2.5 THz.

96 citations

Journal ArticleDOI
TL;DR: In this article, the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground-and space-based interferometers and observations of the cosmic microwave background was calculated.
Abstract: We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations ($10^{-18}\ {\rm Hz} \lesssim f \lesssim 100\ {\rm Hz}$) will be critical to determining the physics that underlies any positive detection of circular polarization in the ISGWB. We also identify a desert in circular polarization sensitivity for frequencies between $10^{-15}\ {\rm Hz} \lesssim f \lesssim 10^{-3}\ {\rm Hz}$, given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational wave polarization.

96 citations

Journal ArticleDOI
TL;DR: It is reported that subwavelength metallic apertures on infinite plane predominantly sense the magnetic field of light, establishing the orientation of the magnetic component of light as a separate entity from its electric counterpart.
Abstract: The nature of light as an electromagnetic wave with transverse components has been confirmed using optical polarizers, which are sensitive to the orientation of the electric field. Recent advances in nanoscale optical technologies demand their magnetic counterpart, which can sense the orientation of the optical magnetic field. Here we report that subwavelength metallic apertures on infinite plane predominantly sense the magnetic field of light, establishing the orientation of the magnetic component of light as a separate entity from its electric counterpart. A subwavelength aperture combined with a tapered optical fibre probe can also serve as a nanoscale polarization analyser for the optical magnetic field, analogous to a nanoparticle sensing the local electric polarization. As proof of its functionality, we demonstrate the measurement of a magnetic field orientation that is parallel to the electric field, as well as a circularly polarized magnetic field in the presence of a linearly polarized electric field.

96 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
88% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Spectroscopy
71.3K papers, 1.5M citations
84% related
Dielectric
169.7K papers, 2.7M citations
84% related
Absorption spectroscopy
66.1K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023384
2022821
2021685
2020927
20191,060
2018968