scispace - formally typeset
Search or ask a question
Topic

Circulating MicroRNA

About: Circulating MicroRNA is a research topic. Over the lifetime, 806 publications have been published within this topic receiving 38239 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Identification of extracellular Ago2–miRNA complexes in plasma raises the possibility that cells release a functional miRNA-induced silencing complex into the circulation, and reveals two populations of circulating miRNAs and suggest that circulating Ago2 complexes are a mechanism responsible for the stability of plasma mi RNAs.
Abstract: MicroRNAs (miRNAs) circulate in the bloodstream in a highly stable, extracellular form and are being developed as blood-based biomarkers for cancer and other diseases. However, the mechanism underlying their remarkable stability in the RNase-rich environment of blood is not well understood. The current model in the literature posits that circulating miRNAs are protected by encapsulation in membrane-bound vesicles such as exosomes, but this has not been systematically studied. We used differential centrifugation and size-exclusion chromatography as orthogonal approaches to characterize circulating miRNA complexes in human plasma and serum. We found, surprisingly, that the majority of circulating miRNAs cofractionated with protein complexes rather than with vesicles. miRNAs were also sensitive to protease treatment of plasma, indicating that protein complexes protect circulating miRNAs from plasma RNases. Further characterization revealed that Argonaute2 (Ago2), the key effector protein of miRNA-mediated silencing, was present in human plasma and eluted with plasma miRNAs in size-exclusion chromatography. Furthermore, immunoprecipitation of Ago2 from plasma readily recovered non–vesicle-associated plasma miRNAs. The majority of miRNAs studied copurified with the Ago2 ribonucleoprotein complex, but a minority of specific miRNAs associated predominantly with vesicles. Our results reveal two populations of circulating miRNAs and suggest that circulating Ago2 complexes are a mechanism responsible for the stability of plasma miRNAs. Our study has important implications for the development of biomarker approaches based on capture and analysis of circulating miRNAs. In addition, identification of extracellular Ago2–miRNA complexes in plasma raises the possibility that cells release a functional miRNA-induced silencing complex into the circulation.

2,900 citations

Journal ArticleDOI
TL;DR: This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins, and hypothesize that ext racellular miRNA are in the most part by-products of dead cells that remain in extrace cellular space due to the high stability of the Ago2 protein and Ago2-miRNA complex.
Abstract: MicroRNAs (miRNAs), a class of post-transcriptional gene expression regulators, have recently been detected in human body fluids, including peripheral blood plasma as extracellular nuclease resistant entities. However, the origin and function of extracellular circulating miRNA remain essentially unknown. Here, we confirmed that circulating mature miRNA in contrast to mRNA or snRNA is strikingly stable in blood plasma and cell culture media. Furthermore, we found that most miRNA in plasma and cell culture media completely passed through 0.22 µm filters but remained in the supernatant after ultracentrifugation at 110 000g indicating the non-vesicular origin of the extracellular miRNA. Furthermore, western blot immunoassay revealed that extracellular miRNA ultrafiltrated together with the 96 kDa Ago2 protein, a part of RNA-induced silencing complex. Moreover, miRNAs in both blood plasma and cell culture media co-immunoprecipited with anti-Ago2 antibody in a detergent free environment. This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins. We hypothesize that extracellular miRNAs are in the most part by-products of dead cells that remain in extracellular space due to the high stability of the Ago2 protein and Ago2-miRNA complex. Nevertheless, our data does not reject the possibility that some miRNAs can be associated with exosomes.

1,712 citations

Journal ArticleDOI
TL;DR: The usefulness of circulating miRNA for cancer diagnosis, prognosis, and therapeutics is summarized and a mechanism for the secretion and incorporation of miRNA into the cells is proposed.
Abstract: In the past several years, the importance of microRNA (miRNA) in cancer cells has been recognized. Proper control of miRNA expression is essential for maintaining a steady state of the cellular machinery. Recently, it was discovered that extracellular miRNAs circulate in the blood of both healthy and diseased patients, although ribonuclease is present in both plasma and serum. Most of the circulating miRNAs are included in lipid or lipoprotein complexes, such as apoptotic bodies, microvesicles, or exosomes, and are, therefore, highly stable. The existence of circulating miRNAs in the blood of cancer patients has raised the possibility that miRNAs may serve as a novel diagnostic marker. However, the secretory mechanism and biological function, as well as the meaning of the existence of extracellular miRNAs, remain largely unclear. In this review, we summarize the usefulness of circulating miRNA for cancer diagnosis, prognosis, and therapeutics. Furthermore, we propose a mechanism for the secretion and incorporation of miRNA into the cells.

1,237 citations

Journal ArticleDOI
TL;DR: Circulating levels of vascular and inflammation-associated microRNAs are significantly downregulated in patients with coronary artery disease.
Abstract: Rationale:MicroRNAs are small RNAs that control gene expression. Besides their cell intrinsic function, recent studies reported that microRNAs are released by cultured cells and can be detected in the blood. Objective:To address the regulation of circulating microRNAs in patients with stable coronary artery disease. Methods and Results:To determine the regulation of microRNAs, we performed a microRNA profile using RNA isolated from n=8 healthy volunteers and n=8 patients with stable coronary artery disease that received state-of-the-art pharmacological treatment. Interestingly, most of the highly expressed microRNAs that were lower in the blood of patients with coronary artery disease are known to be expressed in endothelial cells (eg, miR-126 and members of the miR-17∼92 cluster). To prospectively confirm these data, we detected selected microRNAs in plasma of 36 patients with coronary artery disease and 17 healthy volunteers by quantitative PCR. Consistent with the data obtained by the profile, circulat...

1,152 citations

Journal ArticleDOI
TL;DR: It is demonstrated that specific microRNA species, such as mir-122 and mir-192, both are enriched in the liver tissue and exhibit dose- and exposure duration-dependent changes in the plasma that parallel serum aminotransferase levels and the histopathology of liver degeneration, but their changes can be detected significantly earlier.
Abstract: Drug-induced liver injury is a frequent side effect of many drugs, constitutes a significant threat to patient health and has an enormous economic impact on health care expenditures. Numerous efforts have been made to identify reliable and predictive markers to detect the early signs of drug-induced injury to the liver, one of the most vulnerable organs in the body. These studies have, however, not delivered any more informative candidates than the serum aminotransferase markers that have been available for ≈30 years. Using acetaminophen overdose-induced liver injury in the mouse as a model system, we have observed highly significant differences in the spectrum and levels of microRNAs in both liver tissues and in plasma between control and overdosed animals. Based on our survey of microRNA expression among normal tissues, some of the microRNAs, like messenger RNAs, display restricted tissue distributions. A number of elevated circulating microRNAs in plasma collected from acetaminophen-overdosed animals are highly expressed in the liver. We have demonstrated that specific microRNA species, such as mir-122 and mir-192, both are enriched in the liver tissue and exhibit dose- and exposure duration-dependent changes in the plasma that parallel serum aminotransferase levels and the histopathology of liver degeneration, but their changes can be detected significantly earlier. These findings suggest the potential of using specific circulating microRNAs as sensitive and informative biomarkers for drug-induced liver injury.

1,123 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
82% related
Risk factor
91.9K papers, 5.7M citations
81% related
Cell culture
133.3K papers, 5.3M citations
81% related
Regulation of gene expression
85.4K papers, 5.8M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202155
202088
201971
201877
201792
201679