scispace - formally typeset
Search or ask a question
Topic

Citric acid

About: Citric acid is a research topic. Over the lifetime, 17745 publications have been published within this topic receiving 277125 citations. The topic is also known as: citrate & H3cit.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that expression of the P. aeruginosa citrate synthase gene in plants is unlikely to be a robust and easily reproducible strategy for enhancing the Al tolerance and P-nutrition of crop and pasture species.
Abstract: Aluminum (Al) toxicity and poor phosphorus (P) availability are factors that limit plant growth on many agricultural soils. Previous work reported that expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco (Nicotiana tabacum; CSb lines) resulted in improved Al tolerance (J.M. de la Fuente, V. Ramirez-Rodriguez, J.L. Cabrera-Ponce, L. Herrera-Estrella [1997] Science 276: 1566-1568) and an enhanced ability to acquire P from alkaline soils (J. Lopez-Bucio, O. Martinez de la Vega, A. Guevara-Garcia, L. Herrera-Estrella [2000] Nat Biotechnol 18: 450-453). These effects were attributed to the P. aeruginosa citrate synthase increasing the biosynthesis and efflux of citrate from roots. To verify these findings we: (a) characterized citrate efflux from roots of wild-type tobacco; (b) generated tobacco lines expressing the citrate synthase gene from P. aeruginosa; and (c) analyzed selected CSb lines described above. Al stimulated citrate efflux from intact roots of wild-type tobacco and root apices were found to be responsible for most of the efflux. Despite generating transgenic tobacco lines that expressed the citrate synthase protein at up to a 100-fold greater level than the previously described CSb lines, these lines did not show increased accumulation of citrate in roots or increased Al-activated efflux of citrate from roots. Selected CSb lines, similarly, failed to show differences compared with controls in either citrate accumulation or efflux. We conclude that expression of the P. aeruginosa citrate synthase gene in plants is unlikely to be a robust and easily reproducible strategy for enhancing the Al tolerance and P-nutrition of crop and pasture species.

182 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal decomposition of citric acid, trans-and cis-aconitic acid has been studied using the TG-MS, TG-FTIR and DSC techniques.
Abstract: Thermal decomposition of citric acid, trans- and cis-aconitic acid has been studied using the TG-MS, TG-FTIR and DSC techniques. The measurements were carried out in an argon atmosphere over a temperature range of 293–673 K. The influence of the acid structures and configurational geometry on stability of the transition products and pathways of thermal transformations of the studied compounds studied is discussed.

181 citations

Journal ArticleDOI
TL;DR: The recombinant Y. lipolytica strain H222-S4(p67ICL1) T5 exhibited a gene–dose-dependent high isocitrate lyase expression resulting in strong reduction (<5%) of isOCitric acid, a by-product during CA production.
Abstract: The yeast Yarrowia lipolytica is able to secrete high amounts of several organic acids under conditions of growth limitation and carbon source excess. Here we report the production of citric acid (CA) in a fed-batch cultivation process on sucrose using the recombinant Y. lipolytica strain H222-S4(p67ICL1) T5, harbouring the invertase encoding ScSUC2 gene of Saccharomyces cerevisiae under the inducible XPR2 promoter control and multiple ICL1 copies (10–15). The pH-dependent expression of invertase was low at pH 5.0 and was identified as limiting factor of the CA-production bioprocess. The invertase expression was sufficiently enhanced at pH 6.0–6.8 and resulted in production of 127–140 g l−1 CA with a yield YCA of 0.75–0.82 g g−1, whereas at pH 5.0, 87 g l −1 with a yield YCA of 0.51 gg−1 were produced. The CA-productivity QCA increased from 0.40 g l −1 h−1 at pH 5.0 up to 0.73 g l −1 h−1 at pH 6.8. Accumulation of glucose and fructose at high invertase expression level at pH 6.8 indicated a limitation of CA production by sugar uptake. The strain H222-S4(p67ICL1) T5 also exhibited a gene–dose-dependent high isocitrate lyase expression resulting in strong reduction (<5%) of isocitric acid, a by-product during CA production.

180 citations

Journal ArticleDOI
TL;DR: In this study, citric acid or acetic acid at higher concentrations had the greatest improvement of Pb(2+) desorption, followed by malic acid; and the smallest was oxalic acid.

180 citations

Journal ArticleDOI
TL;DR: The results indicate that this new calcium phosphate cement is a suitable bone substitute material and that the concentration of citric acid in the liquid component affects its mechanical properties and biocompatibility.

178 citations


Network Information
Related Topics (5)
Ascorbic acid
93.5K papers, 2.5M citations
84% related
Antioxidant
37.9K papers, 1.7M citations
83% related
Aqueous solution
189.5K papers, 3.4M citations
82% related
Calcium
78.5K papers, 2.2M citations
82% related
Fatty acid
74.5K papers, 2.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023725
20221,540
2021441
2020597
2019678
2018823