scispace - formally typeset
Topic

Cladding (fiber optics)

About: Cladding (fiber optics) is a(n) research topic. Over the lifetime, 29566 publication(s) have been published within this topic receiving 325458 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
01 Aug 1989-Optics Letters
TL;DR: Bragg gratings have been produced in germanosilicate optical fibers by exposing the core, through the side of the cladding, to a coherent UV two-beam interference pattern with a wavelength selected to lie in the oxygen-vacancy defect band of germania, near 244 nm.

...read more

Abstract: Bragg gratings have been produced in germanosilicate optical fibers by exposing the core, through the side of the cladding, to a coherent UV two-beam interference pattern with a wavelength selected to lie in the oxygen-vacancy defect band of germania, near 244 nm. Fractional index perturbations of approximately 3 x 10(-5) have been written in a 4.4-mm length of the core with a 5-min exposure. The Bragg filters formed by this new technique had reflectivities of 50-55% and spectral widths, at half-maximum, of 42 GHz.

...read more

1,918 citations


Journal ArticleDOI
R.F. Cregan1, Brian Joseph Mangan1, Jonathan Knight1, Tim A. Birks1  +3 moreInstitutions (3)
03 Sep 1999-Science
TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.

...read more

Abstract: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated Only certain wavelength bands are confined and guided down the fiber, each band corresponding to the presence of a full two-dimensional band gap in the photonic crystal cladding Single-mode vacuum waveguides have a multitude of potential applications from ultrahigh-power transmission to the guiding of cold atoms

...read more

1,833 citations


Journal ArticleDOI
Abstract: We present a new class of long-period fiber gratings that can be used as in-fiber, low-loss, band-rejection filters. Photoinduced periodic structures written in the core of standard communication-grade fibers couple light from the fundamental guided mode to forward propagating cladding modes and act as spectrally selective loss elements with insertion losses act as backreflections <-80 dB, polarization-mode-dispersions <0.01 ps and polarization-dependent-losses <0.02 dB.

...read more

1,637 citations


Journal ArticleDOI
01 Jun 2004-Optics Letters
TL;DR: It is shown that by use of a novel waveguide geometry the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2), approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.

...read more

Abstract: We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at highindex-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 mm 22 . This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides. © 2004 Optical Society of America OCIS codes: 030.4070, 130.0130, 130.2790, 230.7370, 230.7380, 230.7390, 230.7400. Recent results in integrated optics have shown the ability to guide, bend, split, and f ilter light on chips by use of optical devices based on high-index-contrast waveguides. 1–5 In all these devices the guiding mechanism is based on total internal ref lection (TIR) in a highindex material (core) surrounded by a low-indexmaterial (cladding); the TIR mechanism can strongly confine light in the high-index material. In recent years a number of structures have been proposed to guide or enhance light in low-index materials, 6–1 1 relying on external ref lections provided by interference effects. Unlike TIR, the external ref lection cannot be perfectly unity; therefore the modes in these structures are inherently leaky modes. In addition, since interference is involved, these structures are strongly wavelength dependent. Here we show that the optical field can be enhanced and conf ined in the low-index material even when light is guided by TIR. For a high-index-contrast interface, Maxwell’s equations state that, to satisfy the continuity of the normal component of electric f lux density D, the corresponding electric field (E-field) must undergo a large discontinuity with much higher amplitude in the low-index side. We show that this discontinuity can be used to strongly enhance and confine light in a nanometer-wide region of low-index material. The proposed structure presents an eigenmode, and it is compatible with highly integrated photonics technology. The principle of operation of the novel structure can be illustrated by analysis of the slab-based structure shown in Fig. 1(a), where a low-index slot is embedded between two high-index slabs (shaded regions). The novel structure is hereafter referred to as a slot waveguide. The slot waveguide eigenmode can be seen as being formed by the interaction between the fundamental eigenmodes of the individual slab waveguides. Rigorously, the analytical solution for the transverse E-field profile Ex of the fundamental TM eigenmode of the slab-based slot waveguide is

...read more

1,620 citations


Journal ArticleDOI
D. Gloge1Institutions (1)
01 Oct 1971-Applied Optics
TL;DR: Simple formulas and functions for the fiber parameters are presented as a help for practical design work that considers the propagation constant, mode delay, the cladding field depth, and the power distribution in the fiber cross section.

...read more

Abstract: Thin glass fibers imbedded into a glass cladding of slightly lower refractive index represent a promising medium for optical communication. This article presents simple formulas and functions for the fiber parameters as a help for practical design work. It considers the propagation constant, mode delay, the cladding field depth, and the power distribution in the fiber cross section. Plots vs frequency of these parameters are given for 70 modes

...read more

1,470 citations


Network Information
Related Topics (5)
Photonic-crystal fiber

28.1K papers, 484.4K citations

86% related
Single-mode optical fiber

24.2K papers, 347K citations

86% related
PHOSFOS

7.1K papers, 125.1K citations

85% related
Graded-index fiber

20.9K papers, 346.7K citations

85% related
Dispersion-shifted fiber

19.4K papers, 320.6K citations

84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202231
2021930
20201,277
20191,442
20181,402
20171,342

Top Attributes

Show by:

Topic's top 5 most impactful authors

Ming-Jun Li

66 papers, 1.3K citations

Kunimasa Saitoh

37 papers, 854 citations

Jacques Albert

37 papers, 1.1K citations

Jayanta K. Sahu

36 papers, 416 citations

Ryuichi Sugizaki

35 papers, 374 citations