scispace - formally typeset
Search or ask a question
Topic

Cladding (fiber optics)

About: Cladding (fiber optics) is a research topic. Over the lifetime, 29566 publications have been published within this topic receiving 325458 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Bragg gratings have been produced in germanosilicate optical fibers by exposing the core, through the side of the cladding, to a coherent UV two-beam interference pattern with a wavelength selected to lie in the oxygen-vacancy defect band of germania, near 244 nm.
Abstract: Bragg gratings have been produced in germanosilicate optical fibers by exposing the core, through the side of the cladding, to a coherent UV two-beam interference pattern with a wavelength selected to lie in the oxygen-vacancy defect band of germania, near 244 nm. Fractional index perturbations of approximately 3 x 10(-5) have been written in a 4.4-mm length of the core with a 5-min exposure. The Bragg filters formed by this new technique had reflectivities of 50-55% and spectral widths, at half-maximum, of 42 GHz.

1,987 citations

Journal ArticleDOI
03 Sep 1999-Science
TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Abstract: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated Only certain wavelength bands are confined and guided down the fiber, each band corresponding to the presence of a full two-dimensional band gap in the photonic crystal cladding Single-mode vacuum waveguides have a multitude of potential applications from ultrahigh-power transmission to the guiding of cold atoms

1,935 citations

Journal ArticleDOI
TL;DR: It is shown that by use of a novel waveguide geometry the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2), approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.
Abstract: We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at highindex-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 mm 22 . This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides. © 2004 Optical Society of America OCIS codes: 030.4070, 130.0130, 130.2790, 230.7370, 230.7380, 230.7390, 230.7400. Recent results in integrated optics have shown the ability to guide, bend, split, and f ilter light on chips by use of optical devices based on high-index-contrast waveguides. 1–5 In all these devices the guiding mechanism is based on total internal ref lection (TIR) in a highindex material (core) surrounded by a low-indexmaterial (cladding); the TIR mechanism can strongly confine light in the high-index material. In recent years a number of structures have been proposed to guide or enhance light in low-index materials, 6–1 1 relying on external ref lections provided by interference effects. Unlike TIR, the external ref lection cannot be perfectly unity; therefore the modes in these structures are inherently leaky modes. In addition, since interference is involved, these structures are strongly wavelength dependent. Here we show that the optical field can be enhanced and conf ined in the low-index material even when light is guided by TIR. For a high-index-contrast interface, Maxwell’s equations state that, to satisfy the continuity of the normal component of electric f lux density D, the corresponding electric field (E-field) must undergo a large discontinuity with much higher amplitude in the low-index side. We show that this discontinuity can be used to strongly enhance and confine light in a nanometer-wide region of low-index material. The proposed structure presents an eigenmode, and it is compatible with highly integrated photonics technology. The principle of operation of the novel structure can be illustrated by analysis of the slab-based structure shown in Fig. 1(a), where a low-index slot is embedded between two high-index slabs (shaded regions). The novel structure is hereafter referred to as a slot waveguide. The slot waveguide eigenmode can be seen as being formed by the interaction between the fundamental eigenmodes of the individual slab waveguides. Rigorously, the analytical solution for the transverse E-field profile Ex of the fundamental TM eigenmode of the slab-based slot waveguide is

1,716 citations

Journal ArticleDOI
TL;DR: In this paper, a new class of long-period fiber gratings that can be used as in-fiber, low-loss, band-rejection filters is presented.
Abstract: We present a new class of long-period fiber gratings that can be used as in-fiber, low-loss, band-rejection filters. Photoinduced periodic structures written in the core of standard communication-grade fibers couple light from the fundamental guided mode to forward propagating cladding modes and act as spectrally selective loss elements with insertion losses act as backreflections <-80 dB, polarization-mode-dispersions <0.01 ps and polarization-dependent-losses <0.02 dB.

1,696 citations

Journal ArticleDOI
D. Gloge1
TL;DR: Simple formulas and functions for the fiber parameters are presented as a help for practical design work that considers the propagation constant, mode delay, the cladding field depth, and the power distribution in the fiber cross section.
Abstract: Thin glass fibers imbedded into a glass cladding of slightly lower refractive index represent a promising medium for optical communication. This article presents simple formulas and functions for the fiber parameters as a help for practical design work. It considers the propagation constant, mode delay, the cladding field depth, and the power distribution in the fiber cross section. Plots vs frequency of these parameters are given for 70 modes

1,506 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
83% related
Photonic crystal
43.4K papers, 887K citations
82% related
Resonator
76.5K papers, 1M citations
78% related
Laser
353.1K papers, 4.3M citations
76% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202231
2021930
20201,277
20191,442
20181,402
20171,342