Topic
Classifier chains
About: Classifier chains is a(n) research topic. Over the lifetime, 170 publication(s) have been published within this topic receiving 20989 citation(s).
Papers published on a yearly basis
Papers
More filters
TL;DR: Experiments on three different real-world multi-label learning problems, i.e. Yeast gene functional analysis, natural scene classification and automatic web page categorization, show that ML-KNN achieves superior performance to some well-established multi- label learning algorithms.
Abstract: Multi-label learning originated from the investigation of text categorization problem, where each document may belong to several predefined topics simultaneously. In multi-label learning, the training set is composed of instances each associated with a set of labels, and the task is to predict the label sets of unseen instances through analyzing training instances with known label sets. In this paper, a multi-label lazy learning approach named ML-KNN is presented, which is derived from the traditional K-nearest neighbor (KNN) algorithm. In detail, for each unseen instance, its K nearest neighbors in the training set are firstly identified. After that, based on statistical information gained from the label sets of these neighboring instances, i.e. the number of neighboring instances belonging to each possible class, maximum a posteriori (MAP) principle is utilized to determine the label set for the unseen instance. Experiments on three different real-world multi-label learning problems, i.e. Yeast gene functional analysis, natural scene classification and automatic web page categorization, show that ML-KNN achieves superior performance to some well-established multi-label learning algorithms.
2,281 citations
TL;DR: The task of multi-label classification is introduced, the sparse related literature is organizes into a structured presentation and comparative experimental results of certain multilabel classification methods are performed.
Abstract: Nowadays, multi-label classification methods are increasingly required by modern applications, such as protein function classification, music categorization and semantic scene classification. This paper introduces the task of multi-label classification, organizes the sparse related literature into a structured presentation and performs comparative experimental results of certain multi-label classification methods. It also contributes the definition of concepts for the quantification of the multi-label nature of a data set.
2,255 citations
TL;DR: This paper aims to provide a timely review on this area with emphasis on state-of-the-art multi-label learning algorithms with relevant analyses and discussions.
Abstract: Multi-label learning studies the problem where each example is represented by a single instance while associated with a set of labels simultaneously. During the past decade, significant amount of progresses have been made toward this emerging machine learning paradigm. This paper aims to provide a timely review on this area with emphasis on state-of-the-art multi-label learning algorithms. Firstly, fundamentals on multi-label learning including formal definition and evaluation metrics are given. Secondly and primarily, eight representative multi-label learning algorithms are scrutinized under common notations with relevant analyses and discussions. Thirdly, several related learning settings are briefly summarized. As a conclusion, online resources and open research problems on multi-label learning are outlined for reference purposes.
1,917 citations
TL;DR: A framework to handle semantic scene classification, where a natural scene may contain multiple objects such that the scene can be described by multiple class labels, is presented and appears to generalize to other classification problems of the same nature.
Abstract: In classic pattern recognition problems, classes are mutually exclusive by definition. Classification errors occur when the classes overlap in the feature space. We examine a different situation, occurring when the classes are, by definition, not mutually exclusive. Such problems arise in semantic scene and document classification and in medical diagnosis. We present a framework to handle such problems and apply it to the problem of semantic scene classification, where a natural scene may contain multiple objects such that the scene can be described by multiple class labels (e.g., a field scene with a mountain in the background). Such a problem poses challenges to the classic pattern recognition paradigm and demands a different treatment. We discuss approaches for training and testing in this scenario and introduce new metrics for evaluating individual examples, class recall and precision, and overall accuracy. Experiments show that our methods are suitable for scene classification; furthermore, our work appears to generalize to other classification problems of the same nature.
1,852 citations
TL;DR: This paper presents a novel classifier chains method that can model label correlations while maintaining acceptable computational complexity, and illustrates the competitiveness of the chaining method against related and state-of-the-art methods, both in terms of predictive performance and time complexity.
Abstract: The widely known binary relevance method for multi-label classification, which considers each label as an independent binary problem, has often been overlooked in the literature due to the perceived inadequacy of not directly modelling label correlations. Most current methods invest considerable complexity to model interdependencies between labels. This paper shows that binary relevance-based methods have much to offer, and that high predictive performance can be obtained without impeding scalability to large datasets. We exemplify this with a novel classifier chains method that can model label correlations while maintaining acceptable computational complexity. We extend this approach further in an ensemble framework. An extensive empirical evaluation covers a broad range of multi-label datasets with a variety of evaluation metrics. The results illustrate the competitiveness of the chaining method against related and state-of-the-art methods, both in terms of predictive performance and time complexity.
1,793 citations